

453-SDS-SWSI

MISSION SERVICES PROGRAM

Space Network (SN)
Web Services Interface (SWSI)
 System Design Specification

DRAFT

October 2000

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland

 453-SDS-SWSI ii

Space Network (SN) Web Services Interface (SWSI)
System Design Specification

October 2000

Prepared Under Contract NAS 9-98100

Prepared by:

Harshna Sampat Date
Computer Sciences Corporation

Prepared by:

Gerald Klitsch Date
Computer Sciences Corporation

Prepared by:

Thomas E. Sardella Date
SWSI Product Manager

Approved by:

 Date

 Goddard Space Flight Center
Greenbelt, Maryland

 453-SDS-SWSI iii

Preface

This System Design Specification describes the detailed design for the Space Network (SN) Web
Services Interface (SWSI) in support of operations of the National Aeronautics and Space
Administration (NASA) Goddard Space Flight Center (GSFC) Network Control Center (NCC) and
of the Demand Access System (DAS) located at the White Sands Complex (WSC).

Changes to this document shall be made by Documentation Change Notice (DCN) or by complete
revision.

Questions concerning this document or proposed changes should be addressed to:

National Aeronautics and Space Administration (NASA)
Goddard Space Flight Center
Technology and Mission Upgrades Project
Code 453
Greenbelt, Maryland 20771

 453-SDS-SWSI iv

Abstract

The primary function of the Space Network (SN) Web Services Interface (SWSI) is to provide a
standards-based cross-platform customer interface for performing Tracking and Data Relay Satellite
(TDRS) and Demand Access System (DAS) scheduling and real-time service monitoring and control.
A secure interface will be provided to allow these functions to be performed either from the NASA
Integrated Services Network (NISN) Internet Protocol (IP) Operational Network (IONET) or from
the Internet.

This System Design Specification presents the detailed design for the SWSI.

Keywords: SWSI, NCCDS, SN, DAS, DASCON

 453-SDS-SWSI v

 Change Information Page

List of Effective Pages

Page Number Issue Page Number Issue

Document History

Document Number Status/Issue Publication Date CCR Number

 453-SDS-SWSI vi

DCN Control Sheet

DCN
Number

Date/Time
Group

Month/
Year

Section(s)
Affected

Initials

 453-SDS-SWSI vii

CONTENTS

PREFACE...III

ABSTRACT ... IV

CHANGE INFORMATION PAGE..V

DCN CONTROL SHEET...VI
Figures..xi

SECTION 1. INTRODUCTION ..1

1.1 Purpose..1

1.2 Background...1

1.3 Scope...2

1.4 Document Organization..2

1.5 Applicable Documents ...3

SECTION 2. DESIGN OVERVIEW..1

2.1 Overview...1

2.2 System Environment..4
Network Control Center (NCC) Data System (NCCDS) Operations.. 4
NCCDS TDRSS Unscheduled Time (TUT) Server... 5
NISN Secure Gateway .. 6

2.3 SWSI Platform...6

2.4 Software Overview..6

2.5 Development Approach..8
2.5.1 Standards/Methodology.. 8
2.5.2 Development Environment ... 9
2.5.3 Development Tools and Software... 10

SECTION 3. CLIENT DESIGN ..1

3.1 Overview...1

 453-SDS-SWSI viii

3.2 Use Cases...1

3.3 Client User Interface...5
3.3.1 Main Panel.. 5

SWSI... 6
3.3.2 Login Panel... 6
3.3.3 Schedule Request Panels .. 8

3.3.3.1 Schedule Add Request (SAR) Panel.. 9
3.3.3.2 Schedule Delete Request (SDR) Panel.. 12
3.3.3.3 Alternate Schedule Add Request (ASAR) Panel... 13
3.3.3.4 Replace Request (RR) Panel.. 13
3.3.3.5 Wait List Request (WLR) Panel... 14
3.3.3.6 Resource Allocation Request (RAR) Panel.. 14
3.3.3.6 Resource Allocation Request (RAR) Panel... 15
3.3.3.7 Resource Allocation Modification Request (RAMR) Panel... 16
3.3.3.8 DAS Playback Modification Request Panel... 17

3.3.4 View Schedule Requests Panel.. 18
3.3.5 View Active Schedule Panel... 21

3.3.5.1 View Service Display Panel.. 23
3.3.6 Alert Panel.. 25
3.3.7 GCMR Panel... 27

3.3.7.1 GCMR Menu Panel for NCC Services... 27
3.3.7.2 GCMR Menu Panel for DAS Services.. 28
3.3.7.3 Service Reconfiguration Panel.. 29

3.3.8 UPD.. 30
3.3.8.1 UPD Summary Panel... 30
3.3.8.2 UPD Detail Panels .. 32
3.3.8.3 UPD Processing .. 34

3.3.9 TSW & State Vectors... 35
3.3.10 ServiceParmWindow... 37
3.3.11 SSC Editing Panel... 41
3.3.12 DAS Resource Availability.. 42
3.3.13 DAS Playback Planning.. 44

3.4 Data Manager..45

3.5 Logging ..48

SECTION 4. APPLICATION SERVER DESIGN...1

4.1 Overview...1

4.2 Detailed Design..3

 453-SDS-SWSI ix

4.3 Data Interfaces..4

4.4 Logging ..4

SECTION 5. ISOLATOR DESIGN ..1

5.1 Overview...1

5.2 Isolator Main Task (MainTask):...4

5.3 Application Server Interface (ServInterface): ..4
5.3.1 TP1 Port.. 4
5.3.1.1 SNIF TP1 Messages... 5
5.3.1.2 SDIF TP1 Messages ... 6
5.3.1.3 Users TP1 Messages... 9
5.3.2 TP2 Port.. 11
5.3.3 TP3 Port.. 12

5.4 Database Interface (DbInterface): ...14

5.5 SNIF Interface (SnifInterface):..14

5.6 SDIF Interface (SdifInterface):..15

5.7 Logging ..15

SECTION 6. SWSI-NCCDS INTERFACE DESIGN ..1

6.1 Overview...1

6.2 Operating Environment...1

6.3 Detailed Design..1
6.3.1 Read Isolator Messages.. 3
6.3.2 NCCDS Interface ... 3

6.3.2.1 Manage NCCDS Communications ... 5
6.3.2.1.1 Schedule Request.. 5
6.3.2.1.2 Schedule Result Message .. 5
6.3.2.1.3 User Schedule Message ... 6
6.3.2.1.4 TDRS Scheduling Window Message.. 6
6.3.2.1.5 State Vector.. 6
6.3.2.1.6 User Performance Data.. 6
6.3.2.1.7 Acquisition Failure Notification.. 6
6.3.2.1.8 Return Channel Time Delay Message ... 6
6.3.2.1.9 Time Transfer Message .. 6
6.3.2.1.10 Ground Control Message Request.. 7

 453-SDS-SWSI x

6.3.2.1.11 Ground Control Message Status and Disposition.. 7
6.3.2.2 Send Schedule Request.. 7
6.3.2.3 Receive Schedule Result .. 7
6.3.2.4 Send TDRSS Scheduling Window.. 7
6.3.2.5 Send State Vector .. 8
6.3.2.6 Receive pmdata ... 8
6.3.2.7 Send Ground Control Message Request... 8
6.3.2.8 Receive Ground Control Message Status and Disposition... 8

6.3.2 Logging and Delogging .. 8

7. SWSI-DAS INTERFACE DESIGN...1

7.1 Overview...1

7.2 SDIF Functionality...2
7.2.1 Isolator to DASCON Interface ... 2

7.2.1.1 Detailed design... 2
7.2.2 DASCON to Isolator Interface ... 3

7.2.2.1 Detailed Design.. 3
7.2.3 Retransmission Thread... 3

7.3 Database Interface..7

7.4 Support for test and operational modes ..7

SECTION 8. DATABASE DESIGN..1

8.1 Design Principles and Guidelines ..1

8.2 The SWSI Database Design...1
8.2.1 Overview... 1
8.2.2 Stored Procedures .. 7

8.2.2.1 SWSI_ActiveSchedule_pkg... 7
8.2.2.2 SWSI_ScheduleRequest_pkg... 8
8.2.2.3 SWSI_ScheduleResponse_pkg.. 9
8.2.2.4 SWSI_GCMR_pkg... 10
8.2.2.5 SWSI_SSCedit_pkg... 11

8.3 Database Configuration ..11

8.4 Database Maintenance...11
8.4.1 Synchronization with NCCDS.. 11
8.4.2 Purging ... 11
8.4.3 Backup and Recovery... 11

 453-SDS-SWSI xi

8.5 Operational Considerations ...12

SECTION 9. TUT SERVER ...1

SECTION 10. SECURITY...1

10.1 Security Requirements ...1

10.2 Security Model..1

10.3 Security Features...2

APPENDIX A – COMMON CLASSES..1

APPENDIX B - TRACEABILITY..1

APPENDIX C - ISOLATOR-SNIF INTERFACE ..1

APPENDIX D – ISOLATOR-SDIF INTERFACE ...1

TBS ..1

APPENDIX E – ISOLATOR OBJECT TYPES DESCRIPTION..1

APPENDIX F – SWSI DATABASE TABLES ..1

Table Name ...1

Type of Table...1

Description ...1

ABBREVIATIONS AND ACRONYMS ..1

Figures

Figure 2-1 High Level SWSI Architecture...4
Figure 2-2 High Level SWSI Dataflow Diagram...7
Figure 2-3 SWSI Development Directory Structure..10
Figure 3-1 SWSI Use-Case Diagram..2
Figure 3-2 SWSI Extended Use-Case Diagrams..4
Figure 3-3 Main Control Panel...5
Figure 3-4 Main Control Panel Menu Options ...6

 453-SDS-SWSI xii

Figure 3-5 Connection Parameters Panel...7
Figure 3-6 Schedule Add Request Panel..9
Figure 3-7 Example of respecifiable panel alone for KaSAR service..11
Figure 3-8 Edit Service Flexibility Parameters Panel..12
Figure 3-9 Delete Request Panel..13
Figure 3-10 Wait List Request Panel..14
Figure 3-11 DAS Resource Allocation Request Panel..16
Figure 3-12 Resource Allocation Modification Request Panel Constructors..16
Figure 3-13 DAS Resource Allocation Modification Request Panel..17
Figure 3-14 DAS Playback Modification Request..18
Figure 3-15 Schedule Requests Panel..19
Figure 3-16 Class Diagrams for Schedule Requests...20
Figure 3-17 Active Schedule Panel..21
Figure 3-18 Class Diagrams of Active Schedule ..22
Figure 3-19 Service Display Panel...23
Figure 3-19a DAS TDRS Handovers Panel..24
Figure 3-20 Class Diagrams of Service Display...25
Figure 3-21 Alert Panel..26
Figure 3-22 DAS GCM Menu Panel..28
Figure 3-23 UPD Summary Panel..31
Figure 3-24 UPD Detail Panel...33
Figure 3-25 State Vector Input Panel...37
Figure 3-26 Class Diagram of ParameterizedRequest Interface...38
Figure 3-27 Class Diagram of ServiceParmWindow..39
Figure 3-28 Class Diagram of ServiceBean Interface ..40
Figure 3-29 DAS SSC Editing Panel..41
Figure 3-30 DAS Resource Availability Request Panel...42
Figure 3-31 DAS Availability Panel...43
Figure 3-32 DAS Playback Planning Panel..44
Figure 3-33 DAS Playback Availability Report..45
Figure 3-34 Data Request Procedure...46
Figure 3-35 Event Class and Listener Interface..47
Figure 3-36 DataValue Class Diagram...47
Figure 3-37 DataManager Class Diagram..48
Figure 4-1 SWSI Server Design ..2
Figure 5-1 Communication Flow of SWSI elements..1
Figure 5-2 Isolator Context Diagram..3
Figure 5-3 Isolator Main Threads..4
Figure 5-4 Data flow of TP1 Messages bound to SNIF/NCC ...6
Figure 5-5 Flow of TP1 DAS Messages that get stored in SWSI database..8
Figure 5-6 Flow of DAS Messages not stored in SWSI database ..9
Figure 5-7 Flow of TP1 Common User Request Messages...10

 453-SDS-SWSI xiii

Figure 5-8 TP2 Data flow Messages..12
Figure 5-9 TP3 Data Flow of the Alerts Messages..13
Figure 6-1 SNIF Context Diagram...2
Figure 6-2 SNIF Level 0 Data Flow Diagram..3
Figure 6-3 NCCDS Interface Data Flow Diagram...4
Figure 6-4 ANCC Interface Data Flow Diagram..9
Figure 7-1 SDIF Context Diagram..1
Figure 7-2 Control Logic Overview..4
Figure 7-3 Detailed Control Logic...5
Figure 7-4 Retransmission Control Logic ...6
Figure 8-1 SWSI Database Schema (part 1 of 3) ..3
Figure 8-2 SWSI Database Schema (part 2 of 3) ..4
Figure 8-3 SWSI Database Schema (part 3 of 3) ..5
Figure 8-4 SWSI Database Table Views...6
Figure A-1 Common Class Diagram 1 ...5
Figure A-2 Common Class Diagram 2 ...6
Figure A-3 Common Class Diagram 3 ...7
Figure A-4 Common Class Diagram 4 ...8
Figure A-5 Common Class Diagram 5 ...9
Figure A-6 SAR Common Class Diagram..11
Figure A-7 SDR Common Class Diagram..11
Figure A-8 ASAR Common Class Diagram..12
Figure A-9 RR Common Class Diagram...13
Figure A-10 WLR Common Class Diagram..14
Figure A-11 MnemonicRequest Common Class Diagram..15
Figure A-12 DAS Requests Common Class Diagram..16
Figure A-13 DAS Availability Common Class Diagrams ..17
Figure A-14 SSC Support Common Class Diagrams ..18
Figure A-15 DAS GCMR Support Common Class Diagrams ...19

 1-1 453-SDS-SWSI

Section 1. Introduction

1.1 Purpose

This document describes in detail the hardware and software design for the Space Network (SN) Web
Services Interface (SWSI). The primary goal of SWSI is to provide a standards-based customer
interface for performing Tracking and Data Relay Satellite (TDRS) and Demand Access System (DAS)
scheduling and real-time service monitoring and control. The intent of the SWSI is not to replace
existing scheduling and real-time systems for all SN customers. It is rather to provide a simple low-
cost interface option, especially for suborbital and infrequent SN customers. SWSI does however
provide the primary customer interface for all DAS customers.

1.2 Background

The interface between a customer Mission Operations Center (MOC) and the Network Control Center
Data System (NCCDS) consists of formatted messages exchanged electronically using either Nascom
4800 Bit Block (BB) protocol or Transmission Control Protocol (TCP). This interface is described in
detail in the NCCDS/MOC Interface Control Document (ICD). New SN customers have traditionally
been provided with a limited number of options for implementing this interface. A full-featured SN
scheduling tool is provided by the User Planning System (UPS), which runs on a Hewlett-Packard (HP)
Unix host. New customers desiring to use UPS for scheduling must either purchase their own system or
interface with an institutional UPS located within the Multisatellite Operations Control Center
(MSOCC). A NASA Integrated Services Network (NISN) Closed Internet Protocol (IP)
Operational Network (IONET) connection is required for the latter option.

No standard option exists to provide a real-time (reconfiguration and performance data monitoring)
interface. All SN customers have been required to implement their own systems at considerable cost.

Prospective SN customers have brought to light the need for a simple, standard, readily available
interface to the NCCDS. In response to this need, NASA funded an in-house project to determine the
feasibility of such a tool. This project resulted in a prototype of a web-based cross-platform customer
interface to the NCCDS, called the SN Web Services Interface (SWSI). Prototyping and proof of
concept work was completed and has been used to provide support to the Long Duration Balloon
Project (LDBP).

The final operational SWSI is a follow-on to the prototype effort and will provide improvements in the
form of a Java-based Graphical User Interface (GUI) and better management of user schedule
information. Using the SWSI, SN customers will be able to perform scheduling, real-time functions,
and state vector storage for only the cost of a desktop computer or workstation. A web browser and a
Java virtual machine, both of which are freely available, will also be required. The SWSI is designed to
be accessed from the NISN Closed IONET or Open IONET. NISN’s Open IONET allows access

 1-2 453-SDS-SWSI

from the NASA Science Internet and the public Internet, thus allowing cooperation with NASA's
university, enterprise, and inter/intra-agency partners.

In addition to providing this interface to the NCCDS for legacy SN services, the SWSI will provide the
customer interface for scheduling the newer DAS Multiple Access Return (MAR) services. The
advantage to the DAS Project is that SWSI already provides the infrastructure needed by DAS to
provide similar customer interface capabilities. Adding a DAS interface to SWSI will spare the DAS
Project the expense of duplicating those facilities and will provide a single integrated application for
customers to perform both legacy SN and DAS scheduling, monitoring, and control.

1.3 Scope

This document describes the proposed design of the SWSI, including the hardware and software
architectures, subsystem designs, and software module definitions. This is the primary document used in
describing the design and forms the basis for implementaton of the system.

1.4 Document Organization

This document is organized into nine sections and four appendices. Following the Introduction (Section
1), this document presents the SWSI Detailed Design in the following order:

• Design Overview (Section 2)

• Client Design (Section 3)

• Application Server Design (Section 4)

• Isolator Design (Section 5)

• SWSI-NCCDS Interface Design (Section 6)

• SWSI-DAS Interface Design (Section 7)

• Database Design (Section 8)

• TUT Server (Section 9)

• Security (Section 10)

• Common Classes (Appendix A)

• Traceability (Appendix B)

• Isolator-SNIF Interface (Appendix C)

• Isolator-SDIF Interface (Appendix D)

• Isolator Object Types Description (Appendix E)

• SWSI Database Tables (Appendix F)

 1-3 453-SDS-SWSI

• Abbreviations and Acronyms

1.5 Applicable Documents

1. Network Control Center Data System (NCCDS) System Requirements, 1998, 530-SRD-
NCCDS/1998

2. Interface Control Document Between the Network Control Center Data System and
Mission Operations Center, 530-ICD-NCCDS/MOC

3. Demand Access System (DAS) Systems Requirements Document, 451-SRD-DAS

4. Interface Control Document Between the Demand Access System and the Space Network
Web Services Interface, 451-ICD-DAS/SWSI

5. NCCDS Protocol Gateway Operator’s Guide Release 98.1, 451-NPGUG/NCC98

6. High Availability User’s Guide Release 98.1, 451-HAUG/NCC98

7. NCC Central Delogger (NCD) Operations Concept, 530-NCD-NCC98, May 1997

8. NCCDS Specification for World Wide Web Server for TDRSS Unscheduled Time and
Nascom Information (Draft), October 1996

9. Java-based Spacecraft Web Interface to Telemetry & Command Handling (Jswitch)
System Design, August 1999

10. Java-based Spacecraft Web Interface to Telemetry & Command Handling (Jswitch)
User's Guide, April 2000

11. NASA Procedures and Guidelines (NPG) 2810.1, Security of Information Technology,
August 1999

12. NASA Policy Directive (NPD) 2810.1, NASA Policy for Security of Information
Technologyy, October 1998

13. Security Plan for the Network Control Center, NCC 98, 451-SP-NCC/1998, April 1998

14. Security Plan for Space Network Web Services Interface, 452-SP-SWSI, May 10, 2000

15. NASA GSFC Data Systems Technology Java™ Style Guide, July 1997

16. IP Operational Network (IOnet) Security Plan, 290-003, September 1999

 3-1 453-SDS-SWSI

Section 2. Design Overview

2.1 Overview

The primary function of the Space Network (SN) Web Services Interface (SWSI) is to provide a Java-
based web interface to the NCCDS and to DAS to perform customer scheduling, real-time service
monitoring and control, and state vector storage. The SWSI performs the following major functions:

• Support all full support customer messages as defined in the NCCDS/MOC ICD.

• Support all messages as defined in the DAS/SWSI ICD.

• Allow a customer to submit all schedule request messages as defined in the ICDs.

• Maintain a database of customer Service Specification Codes (SSCs) that matches the
NCCDS database to assist the customer in generating schedule requests.

• Allow for customer maintenance of DAS-specific SSCs.

• Provide for customer scheduling of DAS playback events.

• Maintain an active schedule file derived from Schedule Result Messages (SRMs) and User
Schedule Messages (USMs) received from the NCCDS.

• Provide an Active Schedule display consisting of events for both NCCDS and DAS scheduled
services.

• Allow a customer to generate Ground Control Message Requests (GCMRs) and display results
received from the NCCDS.

• Allow a customer to generate DAS Service Reconfiguration Messages and display results
received from DAS.

• For each active NCCDS event, maintain a list of current parameter settings that reflects initial
values and any parameters changed in response to User Reconfiguration Request messages.

• Provide for monitoring of NCCDS and DAS User Performance Data (UPD) in user-
configurable displays.

• Store Return Channel Time Delay Messages (RCTDM) and Time Transfer Messages (TTM)
received from the NCCDS in binary files on the customer workstation for later processing by
customer applications.

• Generate Type 8 (stationary) state vectors based on customer entry of latitude, longitude, and
altitude and forward them to NCCDS and/or DAS, depending on which system(s) is used to
support that spacecraft.

 3-2 453-SDS-SWSI

• Allow a user to import state vectors and forward them to NCCDS and/or DAS, depending on
which system(s) is used to support that spacecraft.

• Provide simultaneous access to both the operational NCCDS and the Auxiliary NCC (ANCC)
for performing Engineering Interface (EIF) testing.

• Allow access from NASA Integrated Services Network (NISN) Closed IONET, Open
IONET, and Internet.

• Provide for secure message exchange using encryption

• Log all formatted messages exchanged with the NCCDS and DAS, as well as significant events
and errors. Provide a delogging capability to allow an operator to view logs.

• Provide a High Availability (HA) configuration to adhere to existing NCCDS
Reliability/Maintainability/Availability (RMA) requirements.

• Provide customer access to Tracking and Data Relay Satellite System (TDRSS) Unscheduled
Time (TUT) information from the Open IONET and Internet.

SWSI will not provide any of the shuttle specific support services.

A block diagram showing the high level SWSI architecture is given in Figure 2-1. The architecture is
based on the Java-based Spacecraft Web Interface to Telemetry & Command Handling (Jswitch).
Jswitch performs a similar function to SWSI in that it provides a standards-based secure remote user
interface across open and closed networks to a MOC. SWSI will use a Jswitch backbone with a new
Isolator, an extensively modified Client subsystem, and an enhanced Application Server.

The SWSI consist of three components and seven subsystems. The SWSI components are Client,
Open Server, and Backend Server and the subsystems are Client, Application Server, Isolator, SWSI-
NCCDS Interface (SNIF), SWSI-DAS Interface (SDIF), database, and Open TUT Server. The
Client component is the user’s desktop, which can be any desktop that supports Java Virtual Machine
(JVM) 1.2. The Client subsystem is executed on the Client’s component and its main function is to
allow remote users to schedule Space Network resources with NCCDS and to provide Graphical User
Interface (GUI) to monitor status of the scheduled resources.

The second component is the mid-tier server called Open SWSI Server. It hosts the SWSI Application
subsystem, Open TUT Server subsystem, and other COTS packages; i.e. web server, and security
tools e.g. IP filtering, tcp_wrapper). It is a SUN Ultra 2 sparc workstation connected on the Open
IONet. The main function of the Application Server subsystem is to keep track of the user requests and
provide the requested information to the Client subsystem.

There is a NASA Integrated Services Network (NISN) Secure Gateway between the Open Server
and the Backend Server. The instance of the SWSI Application Server running on the Open Server
component is for the Open IONet and Internet users. It also acts a proxy server for the Client
component and minimizes the “holes” required on the NISN Secure Gateway to support SWSI users.

 3-3 453-SDS-SWSI

The third component is the Closed Server. It is a SUN Ultra 2 sparc workstation connected on the
Closed IONet. It hosts SNIF, SDIF, two instances of the Isolator subsystem and an instance of the
Application Server subsystem. It is also used as the SWSI database server. The instance of the
Application Server subsystem is for the closed IONet users. One instance of the Isolator connects with
the Application Server running on the Open Server and the other connects with the Application Server
running on the Backend Server.

The Application Server subsystem communicates with the Client and Isolator subsystems via secure
SSL connections. The Isolator communicates with SNIF and SDIF, which will handle all
communications with the NCCDS and the DAS Controller (DASCON).

The Open Server component and the Backend Server component consists of two physical hosts for
redundancy. The Backend Server contains SWSI data including user’s information in the shared
database storage. The Backend Server is responsible for all communications with the NCCDS and
with DASCON.

 3-4 453-SDS-SWSI

Figure 2-1 High Level SWSI Architecture

2.2 System Environment

This section describes the environment in which the SWSI operates and briefly discusses the
interactions with external systems with which the SWSI interfaces.

Network Control Center (NCC) Data System (NCCDS) Operations

The NCC serves as the central control facility of the Spaceflight Tracking and Data Network (STDN),
which consists of the Space Network (SN) and Ground Network (GN). The SN includes the Tracking
and Data Relay Satellites (TDRSs) and two ground terminals, the White Sands Ground Terminal
(WSGT) and the Second TDRSS Ground Terminal (STGT). The NCC schedules, controls, and
ensures the reliability of the SN. The SWSI communicates with the operational NCCDS on behalf of
SWSI customers through implementation of the NCCDS/MOC Interface Control Document (ICD)

 3-5 453-SDS-SWSI

protocol. All communications use Transmission Control Protocol (TCP) and are limited to those
messages designated for full support customers.

Auxiliary Network Control Center (ANCC)

The ANCC serves primarily as a test facility for testing new NCCDS software releases and for
performing Engineering Interface (EIF) tests with customer MOCs. It also functions as a backup facility
to the operational NCC should facility evacuation be required. The SWSI will interface to the ANCC
to allow SWSI customers to perform interface testing.

Service Planning Segment Replacement (SPSR)

The SPSR is the primary NCCDS subsystem used for performing SN service planning. SPSR receives
and validates customer service requests, generates and maintains the schedule, and disseminates the
schedule to the appropriate SN elements and customers. The SPSR also receives acquisition data from
the Flight Dynamics Facility (FDF) and SN customers, stores the data, and disseminates acquisition
data to WSGT and STGT. The SWSI maintains TCP connections with SPSR for performing
scheduling and vector storage on behalf of each SWSI customer.

Communications and Control Segment (CCS)

The CCS is the primary NCCDS subsystem used for performing SN service control and service
assurance. Customers are able to perform real-time reconfiguration of an ongoing service through the
use of Ground Control Message Requests (GCMRs). CCS is used to monitor the performance of
active events and passes this information to customers in the form of User Performance Data (UPD)
messages.

NCCDS Protocol Gateway (NPG)

The NPG performs message protocol translation between legacy entities that communicate in 4800 BBs
and newer entities that use TCP messages. Since CCS communicates using 4800 BB protocol and the
SWSI communicates using TCP, the SWSI will establish real-time connections with the NPG, using the
NPG as a TCP proxy for the CCS.

NCCDS TDRSS Unscheduled Time (TUT) Server

The TUT World Wide Web (WWW) Server provides information about unscheduled TDRS
resources. It consists of start and stop times of unscheduled use of the Single Access (SA), Multiple
Access Forward (MAF), and S-band Multiple Access Forward (SMAF) antennas, and Multiple
Access Return (MAR) and S-band Multiple Access Return (SMAR) links for each TDRS. This data is
essentially the unused time in the schedule, with a few adjustments due to flexible events with flexible
start and stop times and/or flexible resources. The NCCDS TUT Server provides this service only to
customers located on the Closed IONET.

Demand Access System (DAS)

The DAS expands the existing TDRSS Multiple Access Return (MAR) capabilities by building upon the
Third Generation Multiple Access Beamforming Subsystem (TGBFS). The existing TDRSs provide
pre-scheduled communication service to customers by using ground-based electronics to process
signals emanating from customers that are relayed by the TDRS on-board phased array antenna

 3-6 453-SDS-SWSI

systems. The TGBFS expands the capability of the TDRSs MAR system and will allow service to be
provided on a demand basis rather than on a pre-scheduled basis.

DAS Controller (DASCON)

DASCON is responsible for scheduling and controlling all DAS-related hardware at the White Sands
Complex (WSC). The SWSI communicates with the DASCON on behalf of SWSI customers through
implementation of the DAS/SWSI Interface Control Document (ICD) protocol. All communications
use Transmission Control Protocol (TCP).

NISN Secure Gateway

The NISN Secure Gateway is a rule-based firewall used to prevent penetration of hosts on the Closed
IONET from less secure networks. A small number of rules is used to allow connection between the
Open Server and the Backend Server components. All message traffic will be channeled through this
path using encrypted Secure Socket Layer (SSL) connections. The rule set will remain static, meaning
that Secure Gateway changes will not be required in response to SWSI customers being added or
removed.

Mission Operations Centers

All the SN customers are responsible for the design, development, maintenance, and operation of their
own Mission Operations Centers (MOCs). SWSI users are required to provide workstations
(desktops) within their MOCs to connect to and operate with the SWSI servers located on either the
open or closed networks. Minimum workstation requirements include a web browser and a Java
Virtual Machine (JVM) version 1.2. A Java Client subsystem will be provided by SWSI to the user to
allow him/her to connect to the Application Server using SSL-encrypted connections. The Client
subsystem will also provide the user-interface and all displays required by the customer to perform
SWSI-related functions.

2.3 SWSI Platform

The Application Servers are hosted on Sun Ultra 2 Sparc computers, each initially configured with a 9
Mbyte hard disk and 128 Mbyte RAM. Quad network interface cards provide redundant heartbeat
interfaces for a High Availability (HA) configuration. The operating system level is Solaris 2.7.

2.4 Software Overview

There are seven subsystems of the SWSI as shown in the high level data-flow diagram in Figure 2-2:

• Client
• Application Server
• Isolator
• SWSI-NCCDS Interface (SNIF)
• SWSI-DAS Interface (SDIF)
• Database
• Open TUT Server

 3-7 453-SDS-SWSI

Figure 2-2 High Level SWSI Dataflow Diagram

 3-8 453-SDS-SWSI

The SWSI design relies primarily on Java supplied Application Programming Interfaces (APIs) to
provide the data encapsulation, transport, and routing mechanisms. This "Pure Java" backbone allows
for the widest possible use among platforms (platform independence). The use of Java allows the
design and construction of platform independent user-interfaces using standard GUI components such
as labels, text-fields, buttons lists, and drop-down boxes. It also ensures safe network delivery,
streamlines software development and deployment, and reduces product development life cycles.
Furthermore, use of the JavaBean component-based architecture allows for expandability of the system.
JavaBeans will be used as the GUI components in the Client application.

1) SWSI is a multi-tiered architecture using a Java application for the front end. This front end is
referred to as the Client subsystem and can run on any computer, which supports Java Virtual
Machine (JVM) for JDK version 1.2. The instance of the Application Server that runs on the Open
Server (Sun Ultra 2 Sparc computer running Solaris 2.7) acts a proxy server for the Client
subsystem. The Application Server listens on one port for the Clients to establish a secure
connection with the Application Server. The Application Server listens on three ports for the
Isolator to establish secure connections. See Table xx for details of how the ports are used.

The Isolator communicates with the SNIF using User Datagram Protocol (UDP) and with the SDIF
using Transmission Control Protocol (TCP). The types of messages between the Isolator and the SNIF
and SDIF are Key Info, File Info, Alerts, and actual NCCDS and DAS messages.

The SNIF will establish connections and communicate with the NCCDS using the protocols and
message formats as defined in the NCCDS/MOC ICD. The SDIF will establish and communicate with
the DASCON using the protocols and message formats as defined in the DAS/SWSI ICD. The SNIF,
SDIF, and Isolator will work in tandem on one platform, with a second set of these subsystems running
as a hot backup on a second platform.

There are two operational modes: normal and test. In normal mode NCCDS requests are sent to the
operational NCCDS. The test mode provides access to the ANCC for performing EIF tests. This
implies that a separate database instance is kept to test with ANCC. This database instance may have
different data. Users will select test or normal operational use at login. No communications will be
established with DASCON to support test mode. DAS requests will simply be stored in the test
instance of the database to support DAS user training.

The system will also include a World Wide Web (WWW) server to view TDRSS Unscheduled Time
(TUT). Currenty, the TUT information is only available to users on the Closed IONet. TUT information
will be mirrored on the Open SWSI Server’s web server where users can view this information.

2.5 Development Approach

2.5.1 Standards/Methodology

Since SWSI is an extension of the Jswitch system, much of the design already exists and will be reused,
with the following exceptions:

 3-9 453-SDS-SWSI

• New common classes will be defined.

• A new Isolator will be developed.

• The Application Server will be mostly reused with some modifications and enhancements as
previously discussed. The existing Application Server design will be used with the new JAVA
components following the design of similar existing JAVA components.

• The Client application will be reused with extensive modifications to customize the user interface
for SWSI. Since these modifications will only effect the placement of functionality (e.g. user
login) within the user interface or will be an extension of the user interface, most of the existing
design can be reused. New panels, subpanels, windows, or beans (as previously defined) will
each be a separate SWSI class. Subpanels may get placed into subpackages if this provides
some benefit.

Java development will follow coding standards originally developed by the NASA/GSFC
Data Systems Technology Division in July 1997. These standards may be found at
http://aaaprod.gsfc.nasa.gov/styleGuides/Java/Java.html.

2.5.2 Development Environment

SWSI will be developed at GSFC Building 12, Room N12, which is a keycarded facility. All
development personnel must have an appropriate security clearance in order to work on this project.

Development will be done on a Sun workstation running the Solaris (UNIX) operating system. Testing
of the Client applications will also use Windows 98 platforms.

An /export/home/swsi directory will be created, under which the following subdirectories will be placed:
dev, test, cm, and ops. This is shown in Figure 2-3. The subdirectories will follow the Java package
naming standard. For SWSI, this will be gov.nasa.gsfc.swsi, with subpackages for the common
classes and each of the subsystems. The Jswitch code will also be kept under the dev subdirectory for
reference and to facilitate reuse. There will also be an /export/home/cots directory under which will be
Phaos, JDK, and Infobus. The location of Oracle will be probably be loaded under the
/export/home/cots directory. Finally, the Gnu’s Not UNIX (GNU) C Compiler (GCC) and some
security packages (tcp wrappers and ip filters) will be subdirectories under /usr/local/bin.

 3-10 453-SDS-SWSI

 export

 |
 home
 ________|___________________
 | |

 swsi cots
 ____________|_________ ______|________
 | | | | | | |

 dev test cm ops Phaos JDK Infobus
 | | | |

 gov . . .
 | : : :

 nasa
 |

 gsfc
 |

 swsi
______________|____________________
| | | | | |

 client server isolator common snif sdif

Figure 2-3 SWSI Development Directory Structure

Source code configuration management (CM) will use Concurrent Versions System (CVS), as used in
another NCC project. CVS is based on Revision Control System (RCS). CM may reuse scripts from
the Jswitch project.

2.5.3 Development Tools and Software

Graphics Designer Professional (GDPro) by Advanced Software Technologies, Inc. will be used as a
design tool. GDPro will be used to create a selected subset of Unified Modeling Language (UML)
diagrams including Use Cases, Sequence Diagrams, and Class Diagrams. These are given in the
appendices.

The Integrated Development Environment (IDE) JBuilder Professional will be used. This tool provides
the following capabilities:

• Source code editing
• GUI design and layout
• Rapid compilation and dependency checking
• Debugging

Entire subsystems may be built within JBuilder to allow use of the debugger. Since the debugger allows
multiple debugging sessions, this can be used to test subsystem interaction.

JBuilder allows user defined JavaBeans to be placed on the component palette. These can include GUI
beans or container classes.

 3-11 453-SDS-SWSI

Other support software will include:

• Operating System SunOS 5.7 (known as Solaris 2.7, also known as Solaris 7)
• Sun Professional Developer Suite (SunProWorkShop) - contains tools (i.e. compiler, debugger)

for C application development
• Oracle Server (Release 8.1.6)
• Oracle Pro*C (Release 8.1.6.0.0)
• Java 2 Standard Edition Release 1.2.2 (free)
• HotSpot version 1.0.1 (free)
• InfoBus version 1.2 (free)
• Phaos SSLava Toolkit version 1.11
• Phaos J/CA Toolkit (for digital certificate generation) (For Build 1) to be replaced by NASA

supplied Entrust Certificate
• Oracle supplied JDBC Thin Driver
• GNU tools: GNU C Compiler (GCC) version 2.95.2, GNU Debugger (GDB) version 4.18,

Data Display Debugger (DDD) version 3.1.3
• TIBCO Extensibility TurboXML
• XML Parser (free)

 3-1 453-SDS-SWSI

Section 3. Client Design

3.1 Overview

The Client software is developed in Java and uses the Swing components of Java 2 to build a Graphical
User Interface (GUI). JBuilder is used to build some of display panels. Most of the display panels have
a window frame. At the uper right corner of the window frame there are three window control buttons:
minimize, maximize, and exit. By clicking on these buttons, the user can iconify, uniconify, and close the
display panel.

The Client subsystem has a Data Manager, which is responsible for establishing a secure connection
with the SWSI Application Server. Each of the Client component panels will go through the Data
Manager to send and receive data. The Client will obtain all the static data it needs from the Isolator
through the SWSI Application Server using standard mnemonic requests. This static data will be used
to present options to the operator. The displays that will be user customizable include the User
Performance Data (UPD) displays.

The Client application will keep a time-tagged log of requests sent and messages received. This will
include Ground Control Message Requests (GCMRs) and responses and acquisition failure messages,
but not UPDs. Client events would also include when connections come up or down.

3.2 Use Cases

Since the SWSI is implemented using JAVA along with SQL and C, an object-oriented analysis and
design (OOAD) methodology is the best choice for documenting all phases of software engineering
activities. The Unified Modeling Language (UML) for use in OOAD provides all required tools to
perform requirement analysis, system design, coding and testing.

Use-case modeling tool is used to describe what a new system should do or what an existing system
already does. As shown in Figure 3-1 is a use-case diagram for the SWSI. In the object-oriented
paradigm this diagram depicts a user view of the overall SWSI system-level functions and requirements.
This view also exhibits interactions between SWSI and its user and administrator. All use cases are
represented by ellipses. User and administrator are shown by actor symbols.

 3-2 453-SDS-SWSI

Figure 3-1 SWSI Use-Case Diagram

All the use cases for NCCDS support are described in Table 3-1.

 3-3 453-SDS-SWSI

Use Case Description
View Schedule Requests User can view all types of schedule requests including Schedule Add

Requests (SARs), Replace Request, Alternate SARs (ASARs),
Delete Requests and Waitlist Requests. Detailed functionality is
described in Figure 3-2 and Table 3-2.

Generate Schedule Requests User can generate any types of schedule requests. Detailed
functionality is described in Figure 3-2 and Table 3-2.

View Active Schedules User can view all active schedule events that have been accepted and
approved by NCCDS. Detailed functionality is described in Figure 3-
2 and Table 3-2.

View Alerts User can view all levels of alerts issued by NCCDS or any other
system sources.

Generate GCMRs User can create and submit Ground Control Message Requests.
Monitor UPD User can select Service Type; User can display UPD.
Submit TSW User can submit TDRS Scheduling Windows.
Submit State Vectors User can create and/or submit Improved InterRange Vectors (IIRV).
User Control User can enter (login) SWSI Application Server by typing user ID,

password, passphrase, and SWSI Application Server port number;
User can disconnect (logout) SWSI Application Server;
User can exit SWSI.

Information User can see current GMT time;
User can view SWSI help information including User’s Guide;
User can view information about SWSI.

SWSI System maintenance Administrator can add user;
Administrator can remove user;
Administrator can synchronize SWSI database with NCCDS
database.

Table 3-1. Use-Cases and Descriptions

Use cases (1), (2), and (3) are extended to show more details in Figure 3-2. Application Server, a
SWSI subsystem, is an actor to provide retrieved data to be used by these cases.

 3-4 453-SDS-SWSI

Figure 3-2 SWSI Extended Use-Case Diagrams

All extended use cases for NCCDS support are described in Table 3-2.

 3-5 453-SDS-SWSI

Use Case Description
View Schedule Requests This use case shows all schedule requests using data retrieved by

SWSI Application Server;
This use case allows user to select a schedule request and view its
details that are retrieved by SWSI Application Server.

Generate Schedule Requests This use case allow user to perform following tasks via an Event
Handler Package that communicate with SWSI Application Server:

Generate a Schedule Delete Request;
Generate a Schedule Add Request (SAR);
Generate a Replace Request;
Generate an Alternate Request;
Generate a Waitlist Request.

View Active Schedules View all Active Schedule Events that are retrieved by SWSI
Application Server;
Select an Active Schedule Event and view its details that are retrieved
by SWSI Application Server;
Allow user via an Event Handler Package, which communicates with
SWSI Application Server, to perform following tasks:

Generate a Replace Request;
Delete Active Schedule Events.

Table 3-2. Extended Use-Cases and Descriptions

The two use-case diagrams above document all SWSI functionality and requirements for subsequent
development activities including design, coding and testing.

3.3 Client User Interface

3.3.1 Main Panel

Figure 3-3 shows the main panel layout. The main panel will include colored connection status
indicators, showing the connection status of the Application Server, Isolator, SNIF and SDIF.

Figure 3-3 Main Control Panel

 3-6 453-SDS-SWSI

Figure 3-4 shows the menu options provided by the main panel. The NCC and DAS menu options are
submenu titles giving access to NCC and DAS specific capabilities. The panel menu options will be
disabled until a connection to the Application Server is made. The “Preferences” options allow the user
to select between the standard Java look and feel settings. Only the supported look and feel options for
that platform will be enabled.

SWSI
User Scheduling Control/Monitor State Vector Admin Time Help

Log-in NCC > Alerts Import Edit SSCs GMT Clock User’s Guide
Log-out | Create SAR UPDs Generate Stationary Local Clock About SWSI
Preferences | TDRS Scheduling Window

Exit DAS >

 | Resource Availability
 | Request

 | Create RAR
 | Playback Planning
 Schedule Request Summary
 Active Schedule Summary

Figure 3-4 Main Control Panel Menu Options

The Scheduling, Control/Monitor, State Vector, and Admin menu items on the main control panel will
be disabled until the user has logged in. After the user has logged in, these menu items will become
enabled, allowing the user to select a panel for that mission.

The DAS specific options would only be available if the one or more of the SICs assigned to that user is
flagged as being DAS enabled in the SWSI database (i.e., the menu options will be disabled for users
with all non-DAS SICs). Likewise, a similar flag and restrictions would exist for NCC capabilities.
This would allow a user to be strictly a NCC user, DAS user, or a combination of both. Finally, the
Admin options would only be available if the user is flagged as a DAS mission administrator in the
SWSI database.

All times entered or display will be in GMT as year, day of year, hours, minutes, and seconds in the
form yyyydddhhmmss.

3.3.2 Login Panel

Selecting Log-in results in the connection parameters panel being displayed, which is shown in Figure 3-
5. This is the log-in screen for the SWSI Server. This panel contains text boxes for the following:

• Host - Shows the IP address of the Application Server (this option will be pre-set from the
properties file and will be “grayed-out”, i.e., input will be disabled)

• Port – Shows the port on which the Application Server will be listening for Client connections (this
option will be pre-set from the properties file and will be “grayed-out”)

• User Id – Enter the identifier assigned to the user to log on to the Application Server

 3-7 453-SDS-SWSI

• Password – Enter the password assigned to the user to log on to the Application Server. For
security purposes, each password character will appear as an asterisk as it is entered.

• Passphrase – Enter the passphrase for the security certificate validation. This extra level of security
validates that the user truly is authorized to access the SWSI Server

Additionally, the panel contains options for a normal or test (EIF) mode connection, and options to
initiate a password and/or passphrase change.

Figure 3-5 Connection Parameters Panel

The Last login displays the date of the last time a login to the SWSI Server was attempted and the
number of failed login attempts since the last successful login.

At the bottom of the Connection Parameters Panel are buttons labeled Login, Logout, and Done. The
functionality of each is described below.

Log-in

 3-8 453-SDS-SWSI

The Log-In button is used to establish a connection between the Client and Application Server. If the
Client is not currently connected to the Application Server, the log-in button is active. After entering
log-in information, clicking on the login button initiates a log-in attempt to the Application Server. Upon
successful connection, the Application Server, Isolator, SNIF, and SDIF connection states displayed on
the Main Control Panel turn from red Disconnected to green Connected. A Warning dialog box with
the following message is also displayed:

This machine is connected to U.S. GOVERNMENT RESOURCES. If not authorized to access
this system, disconnect now. YOU SHOULD HAVE NO EXPECTATION OF PRIVACY. By
continuing, you consent to your keystrokes and data content being monitored.

Clicking OK closes the dialog box. Clicking Cancel returns back to the Connection Parameters Panel.
If an Error dialog box is displayed due to the user entering invalid log-in information, clicking on OK
closes the dialog box. After correcting erroneous log-in information, click on the log-in button again.
Check that the entered host, port, user-id, and password information are correct in the event no
connection can be made, an Error dialog box with the following message is displayed:

No connection could be made to host < host ip address> at port <port number>.

Log-out

Clicking on an active logout button disconnects the user from the Application Server. The log-out button
is active if the label text is black (i.e. the Client is still actively connected to the Application Server).
After the connection between the Client and Application Server has been terminated, the SWSI Server,
Isolator, SNIF, and SDIF status boxes on the Main Control Panel turn from green Connected to red
Disconnected.

Done

Clicking on the Done button removes the Connection Parameters Panel from the screen.

3.3.3 Schedule Request Panels

Schedule request panels permit the user to request SN resources and the NCCDS to schedule them.

The NCC Schedule Request Panels are made up of the Schedule Add Request (SAR) Panel, Schedule
Delete Request (SDR) Panel, Alternate Schedule Add Request (ASAR) Panel, Replace Request (RR)
Panel, and the Wait List Request (WLR) Panel. Two additional panels are used to support the SAR,
ASAR, and RR panels. They are the Service Flexibility and Respecifiable Parameters Panels. All of
these are discussed in sections 3.3.3.1 through 3.3.3.5.

DAS Schedule Request Panels consist of the Resource Allocation Request (RAR) Panel and the
Resource Allocation Modification Request (RAMR). These are discussed in sections 3.3.3.6 through
3.3.3.7.

 3-9 453-SDS-SWSI

3.3.3.1 Schedule Add Request (SAR) Panel

Spacecraft events are scheduled by the NCCDS in response to a user’s SAR. Each SAR designates a
combination of support configurations in a particular time sequence for a specific duration. The design
of the SAR Panel is shown in Figure 3-6.

Figure 3-6 Schedule Add Request Panel

The SAR Panel will be used in viewing previously scheduled requests; “cloning” previously scheduled
requests; or, generating new requests. Viewing a previously scheduled request involves selecting a
request from the Schedule Requests Panel and pressing the “View…” button. Once this occurs, the
Schedule Request Panel invokes the SAR Panel passing along as an argument the SAR object (see
class diagram) associated with the selected request. The SAR is then displayed with all fields disabled
so that no updates are made to the request. Cloning a previously scheduled request involves selecting a
request from the Schedule Requests Panel and pressing the “Clone” button. Doing this invokes the
SAR Panel passing along as arguments the SAR object associated with the selected request and a flag
indicating that the intent is to “clone” an existing SAR object. New SARs may then be created using the
existing SAR’s values as defaults. Generating a completely new request involves either selecting the
“SAR” menu item from the Main Control Panel. The SAR Panel is invoked without any arguments
allowing a user to generate a SAR.

 3-10 453-SDS-SWSI

To generate a SAR the user would first select a SUPIDEN from the drop-down list shown on the
panel. This list of SUPIDENs is part of the static data sent to the Client application at login.
Specifically, a vector of SUPIDENs is retrieved from the user’s SetupObject using the DataManager’s
getSupidenList method. The list of available SUPIDENs is based upon the user, meaning only the
SUPIDENs available to that user will be shown in the list.

The lists of service specification codes (SSCs) and prototype events are all dependent on the SIC,
which can be obtained from the SUPIDEN selected. These lists (vectors) are obtained from the user’s
SetupObject using the DataManager’s getSSCList and getPrototypeEventList methods. The list of
TDRS IDs is independent of the SIC and system id (NCCDS/DAS). This list is obtained from the
user’s SetupObject using the DataManager’s getTdrsIds method.

The Request ID value field is disabled with an initial value of “0000000” when generating a SAR. A
SAR’s Request ID is assigned by the Isolator.

The user may add a prototype event to the SAR by pressing the “Prototype Events” radio button and
selecting a prototype event from the available list. Upon doing so, the “Service Request” label is
renamed to “Prototype Event”. Only one prototype event may be added to the list of services. Note
that for prototype events, the services cannot be modified in any way.

HDS: In contrast to adding a prototype event, the user may add an SSC to the SAR by pressing the
“SSC” radio button and selecting an SSC ID from the available list. Doing so populates the list of
services with a service number, SSC ID, service type, and service flexibility parameters as described
below for the selected SSC. Up to a total of 16 SSCs may be added to the list of services for a
particular SAR. Services are added in an incremental order beginning with “1” on a first-selected, first-
added basis. However, services may be reordered. To reorder a service, select the service to be
moved from the Service Request list and press either the “Move Up” or “Move Down” button. The
selected service’s location in the list changes depending on which button was selected and all affected
services are renumbered according to the selected service’s new location.

Service respecifiable parameters are used in the SAR to change the initial values of certain data items in
one or more SN services. The services may be modified by selecting an SSC and pressing the
“Parameters…” button. This invokes a panel (see Figure 3-7) where parameter values for the selected
service may be respecified, thereby overriding the initial values of the data items in the service.

 3-11 453-SDS-SWSI

Figure 3-7 Example of respecifiable panel alone for KaSAR service

Service flexibility parameters may be modified by selecting an SSC and pressing the “Modify
Service…” button. This invokes a panel (see Figure 3-8) where data items such as service start times
relative to the SAR’s requested start time, service durations, plus and minus tolerances on the relative
service start times, and minimum service durations may be changed. Additionally, this panel permits the
user to specify the start of a service relative to the start of another service rather than relative to the
SAR start time.

 3-12 453-SDS-SWSI

Figure 3-8 Edit Service Flexibility Parameters Panel

Upon completion of entering data for the SAR the user would press the “Submit” button on the SAR
panel. This packages the data into a SAR object as seen in the SAR class diagram (see Appendix A),
and transmits the object to the Isolator via the Server using the DataManager’s sendObject method.

3.3.3.2 Schedule Delete Request (SDR) Panel

An SDR permits a user to request the NCCDS to delete a scheduled spacecraft event or a schedule
request.

To generate an SDR for a scheduled spacecraft event the user would select the event from the Active
Schedule panel (Figure 3-13) and press the “Delete” button. Upon confirming the deletion an SDR
object would be transmitted using the sendObject method. The SDR object would contain the message
class, request ID (unknown until the request is transmitted by the SNIF), reference ID of the event to be
deleted, and SUPIDEN. To generate an SDR for a schedule request the user would select the request
from the Schedule Requests panel (Figure 3-11) and press the “Delete” button. Similarly, upon
confirming the deletion an SDR object would be transmitted using the sendObject method. The SDR
object would contain the message class, request ID (unknown until the ID is assigned by the Isolator),
reference ID of the schedule request to be deleted, and SUPIDEN.

 3-13 453-SDS-SWSI

A user may view an SDR from the Schedule Requests panel. To do so, select the request whose status
field indicates “Deleted” and press the “View…” button. The request would appear in an SDR panel as
shown in Figure 3-9.

Figure 3-9 Delete Request Panel

3.3.3.3 Alternate Schedule Add Request (ASAR) Panel

The ASAR format is almost the same as the SAR format but allows for reference to a SAR, a Replace
Request, or another ASAR queued for batch processing. Along that line the ASAR panel is nearly
identical to the SAR panel except for the SUPIDEN, priority fields, and the “Wait List if unscheduled”
flag, which will be “grayed-out”. ASARs inherit these fields’ values from the referenced requests and
hence these fields are disabled on the ASAR panel. To create an ASAR a user would select the
reference request from the Schedule Requests panel and press the “Generate Alternate…” button. A
panel similar to the SAR panel (see Figure 3-6) would appear and the user would be allowed to modify
the selected request’s information except SUPIDEN and priority. Upon completion of modifying the
data the user would press the “Submit” button, packaging the data into an ASAR object (see ASAR
class diagram, Appendix A) and transmitting the object to the Isolator using the sendObject method.

3.3.3.4 Replace Request (RR) Panel

The RR format is almost the same as the SAR format but allows for replacement of a scheduled event
by another event or for replacement of a SAR, ASAR, or RR. Along that line the RR panel is nearly
identical to the SAR panel except for the SUPIDEN and priority fields. RRs inherit these fields’ values
from the referenced requests and hence these fields are disabled on the RR panel. To create an RR a
user would select the reference request from the Schedule Requests panel or Active Schedule panel and
press the “Generate Replace…” button. A panel similar to the SAR panel (see Figure 3-6) would
appear and the user would be allowed to modify the selected request’s information except SUPIDEN
and priority. Upon completion of modifying the data the user would press the “Submit” button,

 3-14 453-SDS-SWSI

packaging the data into an RR object (see RR class diagram, Appendix A) and transmitting the object
to the Isolator using the sendObject method.

3.3.3.5 Wait List Request (WLR) Panel

The WLR refers to a declined request and requests that it be placed on the NCCDS Wait List.

To create a WLR a user would select the reference request from the Schedule Requests panel and
press the “Generate Wait List…” button. This action would invoke a Wait List Request panel. This
panel displays information about the request being generated and allows the user to modify the time that
this request will expire and be removed from the wait list. Pressing the “Submit” button would package
the information into a WLR object (see WLR class diagram, Appendix A) and transmit the object to the
Isolator using the sendObject method. The design of the WLR panel is shown in Figure 3-10.

Figure 3-10 Wait List Request Panel

A user may also view an existing WLR by selecting the request on the Schedule Request Panel and
pressing the “View” button. This would invoke a WLR Panel similar to Figure 3-10 except for the
following changes. The Expiration Time field would be disabled not allowing user input; the Request ID
value field would list the actual ID from the Schedule Request Panel; the “Submit” and “Cancel” buttons
would be replaced with a “Close” button; and, the title would read “View Wait List Request”. The
following figure lists the constructors used to invoke the WLR Panel.

3.3.3.6 Resource Allocation Request (RAR) Panel

WaitListReqFrame(SAR sarObject, boolean toView) //if toView=true then view
WaitListReqFrame(RR rrObject, boolean toView) // else create WLR

 3-15 453-SDS-SWSI

3.3.3.6 Resource Allocation Request (RAR) Panel

An RAR allows a DAS customer to request DAS resources. The design of the RAR Panel is shown in
Figure 3-11. The constructors used to invoke the RAR Panel is as follows:

The RAR Panel will be used in viewing previously scheduled RARs; “cloning” previously scheduled
RARs; or, generating new RARs. Viewing a previously scheduled request involves selecting a request
from the Schedule Requests Panel and pressing the “View” button. Once this occurs, the Schedule
Request Panel invokes the RAR Panel passing along as arguments the RAR object associated with the
selected request and a boolean flag set to “false” indicating that no cloning is to occur. The RAR is then
displayed with all fields disabled so that no updates are made to the request. Cloning a previously
scheduled request involves selecting a request from the Schedule Requests Panel and pressing the
“Clone” button. Doing this invokes the RAR Panel passing along as arguments the RAR object
associated with the selected request and a boolean flag set to “true” indicating that the intent is to
“clone” an existing RAR object. The RAR Panel is displayed with the “Request ID” and
“ReferencedRequest ID” fields cleared and a new RAR may then be created using the existing RAR’s
values as defaults. Generating a completely new request involves either selecting the “Create RAR”
menu item from the Main Control Panel.

The Request ID value field is supplied with an initial value of “0000000” when generating a new RAR;
the Request ID is assigned later by the Isolator. The ReferencedRequest ID value field appears
disabled with a value of “None” since this field is not used in an RAR. The user may modify other
existing field values or enter new ones. However, to enable the SSC field for entry, the user must first
select a SIC value. The latest DAS SSC parameter values will be retrieved from the database each time
the user selects a new SSC. The user may modify any of the parameters for an SSC before submitting
the request by pressing the “Modify” button, which becomes enabled after an SSC is selected. Pressing
the “Modify” button invokes a ServiceParmWindow similar to Figure 3-7. Pressing the “Submit” button
will cause the client application to check that the SIC, SSC, start and stop times are set before
forwarding the request for scheduling.

ServiceAllocationFrame(RAR rarObject, boolean toClone)
//if toClone=true then clone RAR else view RAR

ServiceAllocationFrame(Date startTime, Date stopTime, String tdrs, String sic)
 //create RAR from selected DAS Availability Panel line
ServiceAllocationFrame()

//create RAR by selecting menu item from Main Panel

 3-16 453-SDS-SWSI

Figure 3-11 DAS Resource Allocation Request Panel

3.3.3.7 Resource Allocation Modification Request (RAMR) Panel

An RAMR allows a DAS customer to modify a previously submitted resource allocation request. The
constructors used to invoke the RAMR Panel are shown in Figure 3-12. The design of the RAMR
Panel is shown in Figure 3-13.

Figure 3-12 Resource Allocation Modification Request Panel Constructors

The RAMR Panel is nearly identical to the RAR panel except that it contains the ReferencedRequest ID
value of the RAR to be modified. The RAMR Panel’s Request ID value field, too, is supplied with an
initial value of “0000000” when generating a new RAMR; the Request ID is assigned later by the
Isolator. RAMRs inherit their SIC and TDRS field values from referenced requests and these fields are
not modifiable on the RAMR Panel. RAMRs also inherit their start/stop times and SSCs from
referenced requests but these field values are modifiable. To generate an RAMR a user would select
the reference request from the Schedule Requests panel and press the “Generate Replace” button. An

ServiceAllocationFrame(RAR rarObject) //create RAMR
ServiceAllocationFrame(RAMR ramrObject) //view RAMR

 3-17 453-SDS-SWSI

RAMR panel would appear and the user would be allowed to modify the selected request’s information
except SIC, TDRS, and ReferencedRequest ID. The user may modify SSC parameter values for the
referenced SIC before submitting the request by pressing the “Modify” button. Upon completion of
modifying the data the user would press the “Submit” button, packaging the data into an RAMR object
(see Figure A-12 DAS Requests Common Class Diagram) and transmitting the object to the Isolator
via the sendObject method.

Figure 3-13 DAS Resource Allocation Modification Request Panel

3.3.3.8 DAS Playback Modification Request Panel

If a DAS Playback Request is selected on a summary panel (see Sections 3.3.4 and 3.3.5) and the
Generate Replace Button is pressed, the panel shown in Figure 3-14 would appear. This will allow the
user to change the requested time for the playback to start, the destination of the playback, or the
transmission protocol of the playback.

 3-18 453-SDS-SWSI

Figure 3-14 DAS Playback Modification Request

3.3.4 View Schedule Requests Panel

From SWSI Main-Panels menu bar user can select and open Schedule Request panel. In this panel, as
shown in Figure 3-15, user can refresh data in the table by clicking Reload button. To view or delete
any schedule request, user can first select any row in the table and then click View or Delete button,
respectively. There are several types of requests displayed on the panel. Some examples are Schedule
Add Request (SAR), Replace Request (RR), Alternate SAR (ASAR), and Wait List Request (WLR).
The generation of these requests can be initiated from this panel by any of those four generation button.
Finally, there is a Close button to allow user to close this panel.

DAS Playback Modification Request

SIC

Submit Cancel

Event ID

Old Start Time

New Start Time

Destination IP Address

Destination Port Number

Desired Transmission Protocol
TCP

UDP

 3-19 453-SDS-SWSI

Figure 3-15 Schedule Requests Panel

DAS Requests will be identified by unique Message Class identifiers to allow someone viewing these
summary panels to distinguish between NCC and DAS requests. Additionally, someone viewing these
panels could sort the requests by pressing the Message Class column header on that panel. This would
group the requests by Message Class and allow the user to more easily identify DAS specific requests.
DAS specific message classes are as follows:

• DAS RAR – DAS Resource Allocation Request

• DAS RADR – DAS Resource Allocation Deletion Request

• DAS RAMR – DAS Resource Allocation Modification Request

• DAS PBKR – DAS Playback Request

• DAS PBKDR – DAS Playback Deletion Request

• DAS PBKMR – DAS Playback Modification Request

To construct the Schedule Request Panel, ViewScheduleRequestFrame class is to define all required
graphical user interface (GUI) components, data, and methods. As shown in Figure 3-16, column
names and data of a table are declared and used to display all schedule requests. All GUI components
are instances of Java and Swing beans, i.e., JPanel, JScrollPane, JButton, and JTable. A table model
class, ViewScheduleRequestTableModel, is extended from a JAVA Swing default table model to
construct the table object to be used in the frame class.

 3-20 453-SDS-SWSI

Figure 3-16 Class Diagrams for Schedule Requests

Each button click or a table selection invokes a correspondent action listener and a Java event handler
to perform the required action. Function loadSchReq is a method to load data into the two-dimensional
data array. To load data into the table, a request for Schedule_Request_List defined in the package,
commons, is sent to Application Server. The Client’s DataManager class will establish data storage,
request data, and notify listener for data updated and/or data ready for access. All schedule request
data are defined by class ScheduleRequest. Function dispSchReqView is called by function
reloadSchReq. Function deleteSchReq is invoked after clicking the Delete button. Function
closeFrame will close the frame after finishing schedule request activities. Note that user can only
reopen this panel from the Main panel.

 3-21 453-SDS-SWSI

3.3.5 View Active Schedule Panel

From SWSI Main-Panels menu bar user can select and open Active Schedule panel. In this panel, as
shown in Figure 3-17, user can refresh data in the table by clicking Reload button. To display service
of any active schedule event, delete or replace any active schedule event, user can first select any row in
the table and then click Display Service, Delete or Generate Replace button, respectively. Finally, there
is a Close button to allow user to close this panel.

Figure 3-17 Active Schedule Panel

DAS events will be given a USM Type of ‘DAS RAR’ or ‘DAS PBK’. Like the Schedule Requests
panel, someone viewing these panels could sort the events by pressing the USM Type column header
on that panel. This would group the events by USM Type and allow the user to more easily identify
DAS specific events. The blank USM Types are actually NCC fixed types and will be shown as
‘FIXED’ in the final implementation. Likewise, the ‘SIM’ types will be shown as ‘FIXED SIM’ in the
final implementation.

Additionally, the logic for the summary panels would have to be modified to support the following
functionality:

 View Button (on Schedule Request Panel): The Schedule Request panel would have to be modified
to call the correct class (DAS Request or SchAddReqFrame) depending on whether a DAS request or
an NCC request was selected for viewing.

Generate Replace Button: Similarly for the Generate Replace button, if a DAS RAR request is
selected, the DAS Resource Allocation Modification Request panel would be called. The panel would
be shown with a title of ‘DAS Resource Modification Request’ and would include the original request’s
ID.

To construct the Active Schedules Panel, ActiveSchedulesFrame class is used to define all required
graphical user interface (GUI) components, data, and methods. As shown in Figure 3-18, column
names and data of a table are declared and used to display all the events in the active schedule. All
GUI components are instances of Java and Swing beans, i.e., JPanel, JScrollPane, JButton, and JTable.

 3-22 453-SDS-SWSI

A table model class, ActiveScheduleTableModel, is extended from a JAVA Swing default table model
to construct the table object to be used in the frame class.

Each button click or a table selection invokes a correspondent action listener and a Java event handler
to perform the required action. The loadUSM function is a method to load data into the two-
dimensional data array. To load data into the table, a request for USM_List defined in the package,
Commons, is sent to the Application Server. The Client’s DataManager class will establish data storage,
request data, and notify listener for data updated and/or data ready for access. All active schedule
event data are defined by class USM. Function displayService is called to open Service Display panel.
Function deleteUSM is invoked after clicking the Delete button. Function generateReplace is called to
open Create Replace Request panel. Function closeFrame is to close the frame after viewing active
events. Note that user can only reopen this panel from the Main panel.

Figure 3-18 Class Diagrams of Active Schedule

 3-23 453-SDS-SWSI

3.3.5.1 View Service Display Panel

From Active Schedule Panel user can click Display Service button and open Service Display panel. In
this panel, as shown in Figure 3-19, user can first select any row in the table and then click Parameters
button. There is a Close button to allow user to close this panel.

Figure 3-19 Service Display Panel

 A new button called ‘View Handovers’ will be added to the Service Display panel. This button would
only be enabled when a DAS event is selected and the TDRS is marked as ‘Any’. This button will
bring up a subpanel displaying the planned TDRS handovers for that DAS service. This panel is a
viewing only panel and is shown in Figure 3-19a.

 3-24 453-SDS-SWSI

Figure 3-19a DAS TDRS Handovers Panel

To construct the Service Display Panel, ServiceDisplayFrame class is to define all required graphical
user interface (GUI) components, data, and methods. As shown in Figure 3-20, column names and
data of a table are declared and used to display all the services. All GUI components are instances of
Java and Swing beans, i.e., JPanel, JScrollPane, JButton, and JTable. A table model class,
ServiceDataTableModel, is extended from a JAVA Swing default table model to construct the table
object to be used in the frame class.

Each button click or a table selection invokes a correspondent action listener and a Java event handler
to perform the required action. The loadUSM_Service function is a method to load data into the two-
dimensional data array. To load data into the table, a request for USM_SSC_List defined in the
package, Commons, is sent to Application Server. The Client’s DataManager class will establish data
storage, request data, and notify listener for data updated and/or data ready for access. All service data
are defined by class ServiceRequest. Function ParametersDisp is called to open Parameters panel
corresponding to the Service Type. Function closeFrame is to close the frame after viewing parameters
activities. Note that user can only reopen this panel from the Active Schedules panel.

DAS TDRS Handovers

SIC:

Service Start Time:

Service Stop Time:

Start Time Stop Time TDRS

 3-25 453-SDS-SWSI

Figure 3-20 Class Diagrams of Service Display

3.3.6 Alert Panel

The alert panel will display NCCDS and DAS alerts and also alerts generated by SWSI subsystems.
This will include:

• system status messages from the Application Server, Isolator, SNIF, or SDIF

• Schedule Result Messages (SRMs) with the result and explanation codes translated by the
SNIF

• Acquisition Failure Notification messages

• The status and disposition of Ground Control Message Request (GCMR)

The alert panel will pop up whenever the first alert is received after the user connects to the application
server. The user may also bring up this panel manually by selecting it on the SWSI main menu.

 3-26 453-SDS-SWSI

This panel will be implemented by modifying the current Jswitch event message panel. This alert
messages panel, shown in Figure 3-21, will display alerts by color based on severity. A column will be
added to show the source of the alert (Application Server, Isolator, SNIF, SDIF, or DAS). The panel
includes a buffered, scrollable table that supports user selection of entries within the table. This allows
the user to select a range of alerts to print or delete. The panel also provides optional alert logging to a
flat file on the user’s client computer.

Figure 3-21 Alert Panel

This Jswitch event message panel will be modified to display and log SWSI alerts containing the
following information:

• Severity (1 = information, 2 = warning, 3 = critical)
Serverity COLOR

1 Green
2 Yellow
3 Red

• Source (Application Server, Isolator, SNIF, SDIF, or DAS)

• SIC (Spacecraft Identification Code)

• TimeTag (YYYY:DDD:HH:MM:SS)

• Text of Alert contains the actual alert message

The panel will also be modified to change the panel title, remove the option to filter messages by
message number or severity level, and to disable the menu option to “Open Event History Viewer”.

 3-27 453-SDS-SWSI

This latter option will be modified in some future release to support viewing of the alert history stored in
the SWSI database.

Since alerts are routed by SICs and some identical alerts can be generated by multiple SICs and some
clients can monitor multiple SICs, some clients may get multiple alerts.

3.3.7 GCMR Panel

3.3.7.1 GCMR Menu Panel for NCC Services

The Ground Control Message Request panel provides a means to submit ground control message
requests (GCMRs).

The GCMR Menu Panel can be triggered by one of two methods:

1. Clicking on the GCMR button on the UPD Summary panel

2. Clicking on the GCMR button on the Service Display panel (a subpanel off the active schedule
panel)

The GCMR Menu panel for NCC events will contain the following information: TDRS, SUPIDEN,
Service Type, Link Number, and GCMR TYPE. Everything but the GCMR type will be pre-filled on
the GCMR Menu panel.

Allowable GCMRs types will be hardcoded in the Client software. Valid values are as follows:
• Service Reconfiguration
• User Reacquisition Request
• Forward Link Sweep Request
• Forward Link EIRP Reconfiguration - Normal Power
• Forward Link EIRP Reconfiguration - High Power
• Expanded User Frequency Uncertainty Request
• Doppler Compensation Inhibit Request - none SSA

The pull down of GCMR types will include all allowable GCMR types for all services. It should be
noted that some GCMR types are not valid for all Service Types. Invalid will be flagged by the
NCCDS. Therefore, if the user selects an invalid GCMR Service Type/GCMR type combination, an
alert generated by the NCC will be displayed on the Alert panel.

Clicking on the submit button at the bottom of the GCMR Menu panel for all GCMR types except
service reconfiguration will send the following common objects to the Application Server.

 3-28 453-SDS-SWSI

GCMR Type Common Object Sent
User Reacquisition Request User_Reaction_Request
Forward Link Sweep Request Forward_Link_Sweep_Request
Forward Link EIRP Reconfiguration – Normal Power Forward_Link_EIRP_Reconfiguration

(power mode set to Normal)
Forward Link EIRP Reconfiguration - High Power Forward_Link_EIRP_Reconfiguration

(power mode set to High)
Expanded User Frequency Uncertainty Request Expanded_User_Frequency_Uncertainty_Request
Doppler Compensation Inhibit Request – none SSA Doppler_Compensation_Inhibit_ Request

(compensationInhibitCode = none SSA

Table 3-3. GCMR Type to Common Object Map

Clicking on the submit button at the bottom of the GCMR Menu panel after selecting the service
reconfiguration value for GCMR Type will display a Service Reconfiguration panel. Service
Reconfiguration GCMRs are discussed in detail in the next section.

3.3.7.2 GCMR Menu Panel for DAS Services

DAS GCMRs would use a DAS unique GCM menu panel (different from NCC requests). For DAS
GCMRs, the EventID would be set, and the GCM types would be restricted to ‘Service
Reconfiguration’ and ‘User Reacquisition Request’. The DAS GCM Menu panel is shown in Figure 3-
22.

Selecting a ‘Service Reconfiguration’ will cause a ServiceParmWindow to be generated allowing the
user to update the SSCs for that service.

DAS GCM Menu

EventID

GCM Type

0900928

Service Reconfiguration

Submit Cancel

Figure 3-22 DAS GCM Menu Panel

 3-29 453-SDS-SWSI

3.3.7.3 Service Reconfiguration Panel

If Service Reconfiguration is chosen as the GCMR type on the GCMR Menu, the ServiceParmWindow
class described in Section 3.3.10 will send a GCParms_(EIF or norm)_(TDRS
ID)_(supiden)_(ServiceType)_(LinkNumber) request to the DataManager (discussed in the common
object area) to register with the DataManager class. The DataManager class will return a GCMR
“placeholder” object. The ServiceParmWindow will setup a listener method on the GCMR
“placeholder” object and wait for GCMR data containing the current ground control service parameter
values for an event and service defined by the TDRS ID, supiden, and service type. The
ServiceParmWindow class will take the layout specifications (static information such as labels and their
locations <row and column>) and dynamically create the Reconfiguration panel. Refer to Section
3.3.10 for further details.

All reconfiguration panels will be divided into the following three sub-panels: the header sub-panel, the
fixed parameter sub-panel, and the reconfigurable sub-panel.

The following fixed parameters will be displayed at the top of the reconfiguration panel in the header
sub-panel:
• SUPIDEN
• Service Type
• TDRS
• Service Start Time
• Service Stop Time

The fixed parameter sub-panel will be displayed in the upper portion of the reconfiguration panel just
below the header sub-panel. The reconfigurable subpanel will be displayed on the lower portion of the
reconfiguration panel under the fixed parameter sub-panel. This panel will contain reconfigurable or
modifiable parameters. Upon display of the reconfiguration panel, the fixed parameters, as well as the
reconfigurable parameters, will be pre-filled with current service values.

The data on the header and fixed parameter panels will be displayed but “grayed out” (i.e., input will be
disabled). Data on the reconfigurable parameters sub-panel can be modified in two ways:

• Reconfigurable parameters with a limited set of valid values: modify the current value by selecting a
new value from the associated pull-down menu. To clear out a parameter, the user should delete
the current value by using the delete key. All blank parameter values will be interpreted as no
change to this parameter value.

• Reconfigurable parameters with numerous values: modify the current value by typing the new value
into the corresponding text field; the new value is typed into an input field.

Clicking on the submit button at the bottom of Reconfiguration panel triggers the Service
Reconfiguration class to load the Service_Reconfiguration_Request common object with the modified
parameter values to be sent to the Application Server.

All GCMR Alert messages will be displayed on the Alert panel; no Alert information will be displayed
on the GCMR panels.

 3-30 453-SDS-SWSI

3.3.8 UPD

When the user selects the UPD option from the Main Control Panel “panels” pull down menu, a
UPD_(EIF or norm)_(SIC) common object is sent from a UPD driver class to the DataManager class
(discussed in the common object area) to register with the DataManager class. The DataManager class
will return a UPD “placeholder” object. The UPD driver will setup a listener method on the UPD
“placeholder” object and wait for UPD data. A UPD Summary Panel that contains an empty Summary
Active Services Table will be generated; the Active Services table will hold the UPD Summary
information to be displayed on the Summary Panel. The Active Services table will be loaded as the
DataManager begins to receive UPD data. The UPD Summary Panel section provides further details.

3.3.8.1 UPD Summary Panel

The UPD Summary panel contains a dynamically sized Summary Active Services table; the table will
grow and shrink as services become active and inactive. The Summary Active Services table will be
loaded with summary data for all active services per TDRS and SUPIDEN or SIC; a service is active if
the DataManager is receiving UPD data. Each row in the Summary Active Services table will include
the following service information: TDRS, SUPIDEN, UPD type, antenna or link number or DAS event
id, and service status. A separate column of Ground Control Message Request (GCMR) buttons will
allow the user to generate a GCMR for an active service. Below is a list of UPD types that can appear
on the Summary Panel:

• SSAF
• KSAF
• KaSAF
• SSAR DG1
• SSAR DG2
• SSAR DQM
• SMAR DG1
• SMAR DG2
• SMAR DQM
• KSAR DG1
• KSAR DG2
• KSAR DQM
• KaSAR DG2
• KaSAR DQM
• MAF
• SMAF
• MAR
• MAR DQM
• SimF
• SimR
• KaSARWB DG2
• KaSARWV DQM
• DASMAR

 3-31 453-SDS-SWSI

The GCMR and service status columns in the UPD Summary Active Services table will be displayed as
a buttons. Clicking on a GCMR button triggers the GCMR subsystem. (Refer to Section 3.3.7 for
details.)

The service status button will be labeled with the maximum severity of UPD detail data as determined
by limit checks performed on the data from the UPD detail panel (ex. good, warning, out of tolerance or
UPD ended). The color of the service status button will correspond to the label of the service status
button as described in Table 3-4 below.

Color of
Service Bar

Label

Meaning

Green “Good” Service is active. No limit-checked parameter failed.
Yellow “Warning” Service is active. At least one limit-checked parameter is at the

warning level. No limit-checked parameters are worse than the
warning level.

Red “Out of
Tolerance”

Service is active. At least one limit checked parameter is out of
tolerance.

Gray “UPD’s
ended”

Service may not be active. Timeout expired without updates for this
service.

Table 3-4. Service Status Button Coloring

Clicking on a service status button in the UPD Summary panel makes the detail panel for a
TDRS/SUPIDEN or SIC/UPD type visible. If the detail panel is already visible, it is brought to the
foreground.

DAS Services would be shown along with the NCC services in the UPD summary panel. The TDRS
ID shown for a DAS service would be the current TDRS ID for that service, the SUPIDEN would be
replaced by the SIC, and the link number replaced by the EventID. This UPD summary panel is shown
in Figure 3-23.

Figure 3-23 UPD Summary Panel

User Performance Data Summary Panel

SUPIDEN
or SIC STATUS Service TDRS

Link or
EventID

Submit
GCMRTime

yyyydddhhmmss B1295MS Good MAF 170
yyyydddhhmmss B1295MS Out of Tolerance SSAF 170 1
yyyydddhhmmss 9000928Good DAS 0461295

 3-32 453-SDS-SWSI

3.3.8.2 UPD Detail Panels

UPD detail panels displayed will either be standard UPD detail panels or customized UPD detail panels.
Standard UPD detail panels will mimic the Operations Data Message (ODM) displays of the
Communication and Control Segment (CCS) of the Network Control Center Data System (NCCDS).
A generic translator program will take the specifications (static information such as labels and their
location <row and column> found in the SetupObject and dynamically create a UPD detail panel; the
SetupObject updDescList will be searched to locate the matching service and retrieve the UPD layout
information. A sample UPD Detail Panel is shown in Figure 3-24.

 3-33 453-SDS-SWSI

Figure 3-24 UPD Detail Panel

Customized panels are standard panels that have been modified by the user and saved; customized
panels are stored locally. Each service will have a UPD detail panel specified as default. The default
UPD detail panel will be the panel displayed upon detail UPD panel selection. The user has the option
to change the default detail UPD panel (Details are discussed below).

The UPD detail panels will have the following functionality:

1. Displays data only (ie, no user input/update)

2. Contains JavaBeans to provide reconfigurable components, limit checks of data and to set data
background colors accordingly. The Range and Numeric beans will need options to set display
color based on item values (refer to #5).

Bean Type Description
JBeanRange Display used to display an enumerated parameter type value
JBeanNumeric Display used for a numeric parameter type
JBeanText Display used for a text parameter type

Table 3-5. JavaBeans Needed for UPD Displays

3. Allows users to modify window layout. Assumes modified windows are only a subset of standard
windows, not (for example) unions. (ex. delete mnemonics, delete components or labels, move
mnemonics, move components or labels, properties, etc.) Clicking on the right mouse button will
display a menu of user reconfiguration options. These modified panels detail will be stored locally in
a file. There is no limit on the number of user reconfigured UPD detail panels.

4. Allows user specification of default UPD detail layouts, one layout per UPD type. The standard
UPD detail panel will be the initial default UPD detail panel. Standard UPD detail panels are
dynamically created using the UPD layout information in the SetupObject. Customized UPD detail
panels, modified standard panels that have been stored locally, may also be set as the default
panel. From a UPD detail panel menu, clicking on the set default option from the UPD detail menu
bar will display a list of standard and user defined panels for the particular UPD type. Clicking on
the name of a panel will set the chosen panel as the default UPD detail panel. The user can select
(click on) either the standard panel which will be dynamically generated from the specifications given
in the SetupObject or a locally stored user specified layout as the default UPD detail panel. If a
user defined UPD detail panel is chosen as default, the UPD Type and window name will be
written to a local file; no entry will be written to the file if the standard UPD detail panel is the
default. When the user accesses the UPD subsystem, the default file will be read to determine
which UPD detail panel is to be displayed. If a record is found in the default panel file, the panel
specified will be displayed; if no entry is found in the default file for the specified UPD Type
combination then the standard panel is dynamically created and displayed. Changing the default
UPD detail panel will cause a readjustment of the UPD Summary panel service status button label
and color, to reflect the maximum severity limit on the chosen UPD detail panel.

 3-34 453-SDS-SWSI

5. Enumerated values passed from the database will be translated into severity levels. Once the
severity level has been established, the color associated with the severity level will be retrieved by
performing a lookup in a table of severity levels mapped to colors. Icons may also be displayed
adjacent to the data value to represent the severity level of the data item; the icon will aid operators
who are color blind. The max severity level, of all data items, and its color will be displayed on the
Summary Display service buttons (refer to Table 3-4 for details). The individual data severity
levels will be shown by coloring the data field on the UPD detail panel as specified in Table 3-6.

Data Color Meaning
Black All Labels
Blue Non Limit checked data item
Green Limit-checked, data is in good range
Yellow Limit-checked, data is in marginal range
Red Limit-checked, data is out of tolerance or invalid

Table 3-6. Data Item Coloring

6. Displays UPD detail information in either 1 panel or 1 panel with 2 subwindows.

3.3.8.3 UPD Processing

As data is received, the UPD driver will determine the UPD type/SIC of the UPD data. A lookup in
the Summary Active Services table will be performed to find a matching SIC/UPD type.

If a match of the SIC/UPD type is found in the Summary Active Services table the following will occur:

• An update method for the UPD type will be called; the update method will load the new UPD data
values onto the existing UPD detail panel.

• A method will be called to update the max severity of the service status button on the Summary
Panel.

• The UPD detail information will be parceled out to the appropriate JavaBeans within the
corresponding UPD detail panel

If the UPD type is not found in the SIC Active Services table the following will occur:

• A look up in the default file by UPD type will be performed to determine which detail panel to
create/open (a standard panel or a customized panel)

Ø If the default panel is set to the standard UPD detail panel for that service, the UPD detail panel
will be dynamically created. A look-up of the corresponding service in the setup object
updDescList will be performed to obtain the layout of the panel. The UPD detail panel will be
made invisible upon creation (the user will be able to display these panels by clicking on the
service status button as described below). The reason behind creating the UPD Detail panels at

 3-35 453-SDS-SWSI

this point is to enable the max severity limit of the detailed data to be shown on the UPD
Summary Panel. The detail data is then parceled out to the appropriate JavaBeans to fill in the
UPD detail panel data values. Data value backgrounds will be set to an appropriate color.
(Refer to Table 3-6 for details.)

Ø If the default panel is set to a customized panel, the panel is opened and the detail data is
parceled out to the appropriate JavaBeans to update the data values in the UPD detail panel.

Ø Data value backgrounds will be set to an appropriate color. (Refer to Table 3-6 for details)

• The new service summary information is added to the UPD Summary Panel.

• The service status button on the Summary Panel will be set to reflect the max severity of the UPD
detail data.

Timeouts of two types will be set on each UPD entry, row, in the Summary table. The first set of timers
will be started when the UPD Summary panel is displayed. When UPD data is received by the
DataManager class, the DataManager class will set the value in the UPD “placeholder” object, the UPD
driver’s listener method will get called and the UPD driver will call a method in the appropriate panel to
set the data. If no UPD updates have been received for a particular service within the specified time,
the time value will be a configurable value that is stored and set in a property file, the timer will expire.
Upon expiration of the timer, the label of the service button on the UPD Summary panel will be changed
to “UPDs ended” and the service status button color will change to gray. At this time a second timer
will be kicked off for that service. If, again, no UPD data is received within the specified time, the time
value will be a configurable value that is stored and set in a property file, the second timer expires and
the corresponding row in the UPD Summary panel table will be removed from the table. Also, all open
corresponding UPD detail panels will be closed. If updated UPD data is received prior to the second
timer expiration, the label of the service status button on the UPD Summary panel will be changed to
reflect the maximum severity of all limit checks from the individual UPD display. The service status
button will also be changed to the appropriate color as defined in Table 3-6.

3.3.9 TSW & State Vectors

TDRS Scheduling Window (TSW) messages notify the NCCDS of when the user spacecraft is within
the line-of-sight of a TDRS. These line-of-sight periods may be further reduced by spacecraft attitude
and antennae pointing limits, solar interference conditions, multipath interference conditions, or radio
frequency interference (RFI) conditions such as the South Atlantic Anomaly (SAA). These predictions
may be mission dependent and may require spacecraft ephemeris, solar ephemeris, attitude solutions,
and spacecraft specific antennae limitations. SWSI will not have any prediction capabilities. Instead, it
will have the ability to take prediction output in the format specified in Table 7-12 of the NCCDS/MOC
ICD and form TSW messages that will be sent to the NCCDS through SWSI. The TSW panel may
simply be a file chooser allowing the user to select which file of TDRS scheduling windows to be sent to
NCCDS. A separate dialog box will be displayed asking the user to select a SIC for the TSWs being
sent. TSWs are not sent to DAS.

 3-36 453-SDS-SWSI

The State Vector panels will support:

1 conversions from Latitude/Longitude/Altitude to type 8 IIRVs

2 IIRV direct entry

3 import of a file of vectors

The State Vector panels will also ask the user to select a SIC for the state vectors. SVs will be sent to
both the NCC and DAS if the user was flagged as an NCC and DAS user, or to either NCC or DAS if
the user was flagged as a user for only one of these.

If the user selects “Generate Vectors” from the Main Control Panel, the panel shown in Figure 3-25 will
appear. The user would enter state vectors manually in this panel. If the user selects “Import” under
“State Vector” from the Main Control Panel, a file chooser panel appears from which the user can
specify which file to send.

 3-37 453-SDS-SWSI

Figure 3-25 State Vector Input Panel

3.3.10 ServiceParmWindow

Subwindows for reconfigurable parameters (for GCMRs) and respecifiables or schedulable parameters
(for Schedule Requests) will use a common window class. This class is the ServiceParmWindow.

This window will have a “header” portion and a split pane. The header portion will consist of the
supiden, SSC, and service type for respecifiable windows; and the TDRS ID, supiden, service type,

State Vector Generation

Epoch Time:

Submit Cancel

SIC

Real-timeData Source

Message Class
Nominal

Inflight Update

Geodetic Reference System WGS-84
Re = 6378.137 (Km), IFC = 298.2572

Altitude: (Km)

Latitude: [-90,90]

Longitude: [0,360]

X Position: (Km)

Y Position: (Km)

Z Position: (Km)

X Velocity: (Km/s)

Y Velocity: (Km/s)

Z Velocity: (Km/s)

Input Type
Convert from Latitude/Longitude/Altitude

Direct IIRV Entry

 3-38 453-SDS-SWSI

and start and stop times (if available) for reconfigurable windows. The top pane of the split pane will
contain fixed parameters. Fixed parameters will be displayed but “grayed out” (i.e., input will be
disabled). The bottom pane will contain respecifiable or reconfigurable parameters, as needed. Both
panes will be scrollable and will lay out parameters vertically. Figure 3-7 shows an early prototype of a
window with the respecifiable pane alone. The final pane will differ in that a column of current values
will be shown between the discriptions and the entry fields.

A pane of reconfigurable parameters will be similar. All parameters on the ServiceParmWindow will be
displayed one per line, with a scrollbar if needed. For display allowing input, each parameter will have
three columns displayed; a label column, current value/default value column, and a user input column.

The title of the final ServiceParmWindow will be:

• “<service type> Schedulable Parameters”, for respecifiable parameters

• “<service type> Reconfigurable Parameters”, for reconfigurable parameters

where an example of <service type> is “KaSAR”.

A window containing respecifiable parameters will have “Save” and “Clear” buttons. Hitting the “Save”
button will cause the ServiceParmWindow to pass a Properties object back to the original caller. This
Properties object will contain the set of keyword/value pairs defining the user selections and settings.
“Clear” will reset all the user’s entries.

A window containing reconfigurable parameters will have “Submit” and “Cancel” buttons. “Submit” will
cause a Service_Reconfiguration_Request common object to be created and sent to the Application
Server via the DataManager. “Cancel” will cause the window to close without a common object being
sent.

This class will support the creation of a standard display layout using the service description information
provided by the login setup. An import function will take information from the login setup that defines
the content and create windows.

This class will provide a new Service window. Depending on which constructor is used to create the
window, it may have a submit button that uses data from GUI components within it to set and send an
output object. Destination of output object will also depend on which constructor was used.

The following class diagrams show the interfaces and class definitions. A description follows each:

ParameterizedRequest
<<interface>>

+void setParameters(short index, Properties parms)

Figure 3-26 Class Diagram of ParameterizedRequest Interface

 3-39 453-SDS-SWSI

The ParameterizedRequest interface defines the method needed by the ServiceParmWindow class
perform a callback to set the respecifiable parameter values. This allows the ServiceParmWindow
object to return an object of the Properties class back to the caller. This Properties object will contain
the keyword/value pairs defining the parameter settings made by the user. The ParameterizedRequest
interface will be implemented by three types of panels: SAR, RR, ASAR, RAR, and RAMR.

ServiceParmWindow
<<implements serializable, ActionListener, WindowListener, MouseListener>>

-short schedFlag; // 0=respecifiable input; 1=respecifiable dis play; 2=reconfigurable
-String myService;
-String mySSC;
-String myTdrsID;
-String mySupiden;
-Date myStart;
-Date myStop;
+ServiceParmWindow(ParameterizedRequest ref, // for respecifiable input
 short index,
 String service,
 String supiden,
 String SSC)
+ServiceParmWindow(String service, // for respecifiable display
 String supiden,
 String SSC)
+ServiceParmWindow(String service, // for reconfigurable input
 String tdrsID,
 String supiden.
 Date start,
 Date stop)

-static ServiceParmWindow importService(String service)

+void setParameters(Properties parms) // to set existing parameter values

Figure 3-27 Class Diagram of ServiceParmWindow

The ServiceParmWindow class provides four possible constructors:

1. The first constructor which takes an argument of ParameterizedRequest, among others, generates a
window of respecifiable parameters. This window will do a callback to the caller’s
(ParameterizedRequest object’s) setParameters method to provide any parameter values that were
set by the user when the user presses the “Save” button.

2. The second constructor, which takes arguments of service type, SIC, and SSC, generates a read
only display of respecifiable parameters for the user to view. The calling object needs to first call
this constructor, followed by a call to the setParameters method of this class to pass the current
parameter values to the ServiceParmWindow for display. The “Save” and “Clear” buttons will be
disabled.

 3-40 453-SDS-SWSI

3. The third constructor, which takes arguments of service type, TDRS ID, supiden, and start and stop
times, will generate a display of reconfigurable parameters. The calling object needs to first call this
constructor, followed by a call to the setParameters method of this class to set the current
reconfigurable parameter values. The resulting ServiceParmWindow object will create and send a
Service_Reconfiguration_Request object when the user presses the “Submit” button.

4. The fourth constructor, which takes an argument of Event ID, is used to support the DAS GCMR.

Each of these constructors work in a similar manner in that they will set the schedFlag to indicate what
type of window is being created. They will then get the default window layout. If the default is a user
defined layout, this window will be deserialized. If the default is the standard layout, the constructor will
call the private, static method importService to obtain the service description parameters from the
DataManager and create the window.

The ServiceParmWindow will also have the methods defined by the interfaces that it implements.

ServiceBean
<<interface>>

+void setText(String text)
+String getText()

Figure 3-28 Class Diagram of ServiceBean Interface

The ServiceBean interface defines the bean methods needed for the ServiceParmWindow to get and set
the text values of the GUI components within it. The types of beans needed include:

Bean Type Description
JBeanRange Display used to display an enumerated parameter type value
JBeanRadio Input set of radio buttons used for an enumerated parameter type
JBeanDropList Input drop down list used for an enumerated parameter type
JBeanNumeric Either used for a numeric parameter type
JBeanText Either used for a text parameter type

Table 3-7. JavaBeans Needed for ServiceParmWindow

Some of these beans may also be used for the UPD displays. Many of these beans will be simple
extensions of the existing Java Swing beans to implement the ServiceBean interface. Beans
implementing an enumerated type will have a property of JBeanStates[] which will map state names
(i.e., text to display) to values. The display of Java Date values is TBD. Additionally, JLabel classes
will be used to display labels within the window.

 3-41 453-SDS-SWSI

3.3.11 SSC Editing Panel

SWSI permits editing of existing DAS SSC parameters through the use of the SSC Editing Panel. To
access this panel a user would select the “Edit SSCs” menu item from the Admin Menu of the SWSI
Main Panel which invokes a panel similar to the one shown in Figure 29.

Enabling the SSC field for entry first requires the user to select a SIC value. The list of available SICs is
retrieved using the DataManager’s getSICs method and consists of only those for which the user is
flagged as having mission administrative privileges. After selecting a SIC value the user may select an
SSC from the list of SSCs retrieved using the DataManager’s getSSCList method. The user may edit
any of the parameters for an SSC by pressing the “Edit” button, which becomes enabled after an SSC
is selected. Pressing the “Edit” button invokes a ServiceParmWindow containing the latest SSC
parameter values retrieved from the database. Simultaneously, the client signals the Isolator to “lock”
the SSC selected preventing other users from modifying the SSC’s default parameters. Once the user is
done editing the parameter values and presses the “Submit” button on the ServiceParmWindow, the
SSC parameter values are sent to the Isolator to be stored in the database, and the SSC is unlocked.
The SSC is also unlocked if the user decides to abandon the editing session by pressing the “Cancel”
button on the ServiceParmWindow or when user logs off.

Figure 3-29 DAS SSC Editing Panel

 3-42 453-SDS-SWSI

3.3.12 DAS Resource Availability

Selecting the DAS ‘Resource Availability Request’ from the main control panel would result in a menu
panel from which the user could choose to request a DAS resource availability report by specifying the
time window within which the service is desired. This panel is shown in Figure 3-30. The ‘TDRSs
Selected’ is a checkbox allowing multiple selections. The list of TDRSs would be created from the list
provided in the SetupObject to the client. A user can select multiple TDRS or ‘Any’, which indicates
no preference in selecting TDRSs for use. In this latter case, DAS would make the TDRS selection and
indicate when if any TDRS handovers would occur.

Figure 3-30 DAS Resource Availability Request Panel

The DAS Availability panel, showing the resource availability report, is shown in Figure 3-31. This
panel may contain additional columns indicating DAS resources available. This panel will contain a non-
editable header showing the corresponding DAS Availability Request made by the user. The ‘Impact’
column shows, for dedicated users, what impact they might have on other missions by preempting this
time slot. Impacts would be rated as being none, low, or high. A panel of this type will be created for

DAS Resource Availability Request

Window Start Time

Window Stop Time

Minimum Duration

TDRSs Selected

TDE
TDW
TDS

Submit Cancel

SIC

171
275

AnySet maximum lines

Maximum lines

 3-43 453-SDS-SWSI

each availability request submitted. Multiple panels could be brought up to allow the user to compare
availabilities during different periods.

Figure 3-31 DAS Availability Panel

The DAS Availability panel would allow the user to select a line and create a DAS Resource Allocation
Request. If the ‘Create Request’ button is selected the DAS Resource Allocation request panel,
discussed in section 3.3.3.6, is generated with the start time, stop time, desired TDRS, and SIC
prefilled. Only one line can be selected per request.

DAS Availability

Start Time Stop Time TDRS

Create Request Cancel

Window Start Time

Window Stop Time

Minimum Duration

TDRSs Selected

SIC

DurationImpact

 3-44 453-SDS-SWSI

3.3.13 DAS Playback Planning

Selecting the DAS ‘Playback Planning’ option from the main control panel would result in a menu panel
in which the user could specify the time window within which data retrieval is desired. This panel is
shown in Figure 3-32.

Figure 3-32 DAS Playback Planning Panel

The DAS Playback Availability report, shown in Figure 3-33, would allow the user to select and
request an available playback. The user would be allowed to make multiple selections from the table as
part of the same playback request. The DAS response to this request would be returned to the client in
the form of an alert message.

DAS Playback Planning

Window Start Time:

Window Stop Time:

Submit Cancel

SIC

 3-45 453-SDS-SWSI

Figure 3-33 DAS Playback Availability Report

3.4 Data Manager

For the main panels the receive data (Active Schedule and Schedule Request), the main menu panel (or
driver) will send the initial request to the DataManager, receive a ‘placeholder’ object from the
DataManager, and set up a listener on this placeholder object. When data are received and the
DataManager sets the value in the placeholder object, the driver’s listener method will get called and the
driver will in turn call a method in the appropriate panel to set the data. Thus, each of these panels will
need a setValue(object) method through which the common object can be passed once it is received.

To get updated data, the panels will call one of the following static methods in the DataManager:

• public static void getUpdatedUSMs();

DAS Playback Availability

Start Time Stop Time

Create Request Cancel

Window Start Time:

Window Stop Time:

SIC

Event ID

Desired Transmit Start Time

Destination IP Address

Destination Port Number

Desired Transmission Protocol
TCP

UDP

 3-46 453-SDS-SWSI

• public static void getUpdatedScheduleRequests();

Subpanels making a request for detailed information will need to make a request to a DataManager
static method, receive a ‘placeholder’ object, and set a listener on this object to receive an event
signaling when the data are received. This is illustrated Figure 3-34.

Figure 3-34 Data Request Procedure

1 The component will create a MnemonicRequest object. The class diagram for the
MnemonicRequest class is given in Appendix A. This class provides data needed to define the
different types of requests. The component only needs to fill in the subset of data needed for this
particular request. The component will create a mnemonic name string using the naming convention
given in Appendix A. This mnemonic name string also gets set in the MnemonicRequest object. If
the component has previously requested data and created a MnemonicRequest object, the
component can reuse this object to refresh (‘reload’) the data.

2 The component will call the static method: DataManager.requestData(MnemonicRequest request);
which will return DataValue object (described later). Both the DataManager and the component
now have a pointer to the placeholder.

3 The component will call: addDataValueChangeListener(this); which will add the component as a
listener on that item.

4 Once the DataManager receives a value for that item, it will call setObject(object); setting the value
in the placeholder.

5 The DataValue object will call the dataValueChanged(DataValueChangedEvent) method of all its
listeners, alerting them that the placeholder now has a(n updated) value.

6 The component can now get the common object by calling the getObject() method on the
DataValue (placeholder) object.

3 2,4,5

1
Component DataManager

Placeholder

 3-47 453-SDS-SWSI

Figure 3-35 illustrates the event class and event listener interface.

Figure 3-35 Event Class and Listener Interface

The DataValue class diagram given here lists its methods:

Figure 3-36 DataValue Class Diagram

java.util.EventObject

DataValueChangedEvent

java.util.EventListener
<<interface>>

DataValueChangeListener
<<interface>>

void dataValueChanged(DataValueChangedEvent);

Panel

DataValue

public void addDataValueChangeListener(DataValueChangeListener)
public void removeDataValueChangeListener(DataValueChangeListener)
private void fireDataValueChanged()
public object getObject()
public void setObject(object)

 3-48 453-SDS-SWSI

The following class diagram show the methods available through the DataManager, including the
methods used to retrieve the static data:

Figure 3-37 DataManager Class Diagram

3.5 Logging

All the alerts received will be logged in a file on the user’s workstation. Other data e.g. , RCTD, and
TTM data will be optionally logged. Other than this, no data, static or otherwise, will be stored on the
Client PC due to security concerns.

Log files will use a standard naming convention. The following table defines this convention:

Name Description
User_ID_#.log Log file of alerts
(EIF or norm)_rctd_(date/time)_#.dat return channel time delay data
(EIF or norm)_ttm_(date/time)_#.dat time transfer message data

Table 3-8. Client Log Files Naming Convention

The Client subsystem’s property file will contain a maximum size parameter for each of these files. A
new log file will be opened when the maximum size is reached, with the _# number in the file name
incremented by one.

Additionally, the Client can produce debug output to a separate debug output file. The file name and
level of output are controlled by property values read in from the client’s property file.

DataManager

public static DataValue requestData(MnemonicRequest)
public static void stopData(String)
public static DataValue requestAlerts(String)
public static void stopAlerts(String)
public static synchronized void sendObject(object)

public static void getUpdatedUSMs()
public static void getUpdatedScheduleRequests()

public static Vector (of String) getTdrsIds(boolean getMult, boolean getNCC, boolean getDAS)
public static Vector (of String) getSICs(boolean getNCC, boolean getDAS)
public static Vector (of PrototypeEvents) getPrototypeEventLis t()
public static Vector (of SSC_List) getSSCList(boolean getNCC, boolean getDAS)
public static Vector (of String) getSupidenList()
public static Vector (of ServiceDescriptions) getServiceDescriptionsList()
public static Vector (of UPDDescriptions) getUpdDescriptions()
public static boolean isEIFmode()
public static String getUserId()

 4-1 453-SDS-SWSI

Section 4. Application Server Design

4.1 Overview

The SWSI Application Server is designed to perform three main functions: accept and provide
authentication and security of Client connections, accept connections from the Isolator, and maintain the
data flow to and from the SWSI Client. The Application Server will also log pertinent information. A
standard Jswitch Application Server will be used which will be modified to add directives and
messaging.

No validations or authentications (of, for example, SARs) are expected at the Application Server. This
will all be done by the SNIF or Isolator.

The Application Server will have a backup on a separate platform. However, failure of the prime
Application Server will necessitate that all the Client applications and the active Isolator reconnect to the
backup Application Server and reinitialize their sessions. The use of a High Availability (HA) tool will
allow the backup Application Servers to share the same IP address(es). This will allow the Clients and
Isolator to connect to the same IP address regardless of which Application Server is primary.

The Application Server design is given in Figure 4-1.

 4-2 453-SDS-SWSI

Figure 4-1 SWSI Server Design

The Application Server will receive all incoming Client requests to connect to SWSI. Client
applications will establish an SSL connection with the Application Server and will exchange digital
certificates with the Application Server for authentication. Client applications will then provide a user ID
and password as part of a login object. This object will be forwarded to the Isolator for verification.
The userID will be retained by the Application Server for later use. The Isolator will respond with a
SetupObject if the user ID and password are verified, which the Application Server will forward back
to the Client. Client connections will be accepted after connection to the Isolator machine is
established.

Isolator connections will consist of 3 socket connections, each of which will be initiated by the Isolator.
Three instances of the IsolatorHandler class will be created to accept these connections. Once these
connections are made, the connections are handed off to the DataManager class via an instance of the
DataManagerAdaptor class.

The DataManager class will be responsible for maintaining the connection to the Isolator machine. The
DataManager will be responsible for routing requests to the Isolator. Client threads can send requests

 4-3 453-SDS-SWSI

to the DataManager, which will be queued for processing. The Data Manager will also maintain an
instance count of each request and alert service. This is coordinated with the InfoBus.

The Application Server will maintain the data flow to the Client using the InfoBus. The InfoBus will
keep a list of the requests associated with each Client thread. The InfoBus will use a notification
mechanism to inform Client threads when requested data are available. The InfoBus will also distribute
the alert messages to each Client thread associated with the alert’s SIC.

4.2 Detailed Design

The SWSI Application Server will use an instance of the ServerHandler class to create a server socket
that waits for incoming Client connections. It will then authenticate each Client connection using the
SSL protocol and pass a username/password combination to the Isolator for authentication. Once a
successful connection is made, the instance of the ServerHandler class will clone itself to create an
instance that will further tend that specific Client connection. A separate clone is created for each Client
connection.

Two new Client threads will be spawned by the clone. Thus, two threads will exist for each Client
connection. A reader thread will read the socket connection and process requests. A writer thread will
write request responses back to the Client. Both of these Client threads are within the scope of the
ServerHandler clone. The clone tracks whether the Client has responded to previous data sent to the
Client with an ack (DataRequest object) before sending additional data. The ack indicates the Client is
ready to accept more data. This handshaking is designed to prevent the Application Server from filling
its socket with data before the Client is able to accept it.

The ServerHandler class will be responsible for the connection to the Client. The SetupObject is sent
by the Isolator through the Application Server to the Client upon successful login of the Client. The
Client thread will handle all communication to and from the Client. Only Client specific information is
maintained in these threads. The Client thread will communicate with the DataManager via the InfoBus
to make requests to the Isolator and receive responses. The Client thread will not send a data update
until the Client acknowledges the previous update. This is to prevent buffering old data, which could
cause the Application Server to fail. The design will include a small FIFO queue of alerts, in the event
the Client or network performance falls behind. Old alerts will be dropped from the queue if the queue
reaches a maximum size. Alerts can be filtered by severity so important messages are not dropped.

When the Client requests alerts (which the Client will do automatically), the ServerHandler clone will
create an instance of the AlertIB class. This class will receive alerts off the InfoBus and queue alerts for
the SICs being monitored by that Client. Likewise, if the Client makes any other requests, the
ServerHandler clone will create an instance of the DataIB class. This class will receive responses from
the Isolator off the InfoBus and store the responses in local buffers. When either the AlertIB or DataIB
classes have data, the writer thread will be resumed to write the queued or buffered data to the Client.

 4-4 453-SDS-SWSI

4.3 Data Interfaces

The Application Server will require the following input and output files.

Server Inputs

The Application Server will need digital certificates to authenticate itself to Clients and the Isolator, and
will need the CA certificate to authenticate the Clients. The Server will also need property files that
contain configuration parameters for the Application Server. The following table lists these:

Name Description
other.prop Provides non-SSL required properties such as port numbers
SSL.prop Provides SSL specific properties (crypto-suite to use, etc.)
SWSI-ca-cert.der Certificate authority certificate
SWSI-server-cert.der Server Certificate
enc-SWSI-server-key.der Encrypted Server key

Table 4-1. Application Server Input Files

Server Outputs

The Server will write to the following two logs:

Name Description
bad_logins.log Log of rejected login attempts
activity.log Activity log

Table 4-2. Application Server Output Files

4.4 Logging

The Application Server will maintain two log files. All logins (successful or failed) shall be logged, and
will include the IP address. The activities of a successful connection will be logged. The log will identify
the time and Client connection along with the activity. The Application Server will be configurable to
have some control over the granularity of logging other data, i.e., what types of requests will get logged.
These logging options will be set as a properties in the Application Server’s other.prop file. Other
properties will include the names of the log files. A separate file will be maintained for the unsuccessful
login attempts. In order to avoid the log files from growing forever, the Application Server create a new
log file every xx days (xx will be controlled by a property in other.prop). This design will allow a system
operator to delete the old log files. Additionally, the Application Server can produce debug output to a
separate debug output file. The file name and level of output are controlled by properties in other.prop.

 6-1 453-SDS-SWSI

Section 5. Isolator Design

5.1 Overview

The Isolator Subsystem serves as the central communication node for all the other SWSI internal
subsystems. These subsystems are the Application Server, SDIF, SNIF and the SWSI Database
Server which are, in turn, dedicated communication nodes to the end external elements such as the
NCC/DAS users, the DASCON, the NCC/ANCC and the SWSI databases. Figure 5-1 depicts the
communication flow between the SWSI internal subsystems and external elements.

Figure 5-1 Communication Flow of SWSI elements

The primary functions of the Isolator are to receive user requests from the Application Server, to
process the requests and to send responses back to the Server to be forwarded to the client. The
Isolator also forwards messages to the NCC/ANCC or DASCON, passes Alert, TTM and UPD
information to the Application Server, stores and retrieves data from the SWSI database and logs
information about user and database activity. The Isolator subsystem resides on the same platform with

SDIF

SNIF

 Application
Server

ISOLATOR Database
Server

DASCON

NCC

&
ANCC

USERS

SWSI
Databases

 6-2 453-SDS-SWSI

the SNIF subsystem, the SDIF subsystem and the SWSI database server (Figure 5-2). However, the
Isolator design allows for the separation of any or all of those subsystems such that they can run on
different platforms if needed.

DATABASE
SERVER

APPLICATION

SERVER

ISOLATOR

Local
Storage

(Flat files)
TCP,UDP,DB Connections

Local data flow

SDIF
- NCC Requests
- NCC Replies
- DAS Requests
- DAS Replies
- User Requests
- User Replies
- Alerts
- Status

- DAS Requests
- DAS Replies
- Alerts
- Status

- NCC Requests
- NCC Replies
- Alerts
- Status

- TSW
- TTM
- RCTDM

- TSW
- TTM
- RCTDM

SNIF

- User
Requests
- User
Replies

- SV
- Alerts

- DAS Data
- SV
- Alerts

- NCC Data
- SV
- Alerts

 6-3 453-SDS-SWSI

 Figure 5-2 Isolator Context Diagram

As mentioned in Section 2, the SWSI Closed Server component hosts among other subsystems, one
instance of SNIF and two instances of the Isolator subsystem. One instance of the Isolator connects
with the Application Server running on the Open Server and the other connects with the Application
Server running on the Backend Server. The functional difference between the two is one isolator
supports users on the Open IONet and Internet while the other supports the users on the Closed
IONet. The Isolator consists primarily of the following five major threads (see Figure 5-3):

1. Isolator Main Task (MainTask)
2. Application Server Interface (ServInterface)
3. Database Interface (DbInterface)
4. SNIF Interface (SnifInterface)
5. SDIF Interface (SdifInterface)

TCP Port
IP=Localhost
Port=TBD

TCP Port
IP=TBD
Ports=TBD

URL=TBD
Name=TBD
Password =TBD

SNIF

Database
Server

ISOLATOR

Database
Connection

All Schedule Requests
Clients Requests

Clients Replies
Real-Time Messages

Alerts

ANCC
I/F

database

1

3

2

D
B
I
N
T
E
R
F
A
C
E

 SNIFINTERFACE

MAIN
TASK

NCCDS
I/F

database

Application
Server

 SDIFINTERFACE

S
E
R
V
I
N
T
E
R
F
A
C
E

SDIF

UDP Port
IP=Localhost
Port=TBD

 6-4 453-SDS-SWSI

Figure 5-3 Isolator Main Threads

5.2 Isolator Main Task (MainTask):

The MainTask is the Isolator main thread that creates and starts all of the other Isolator threads. This
task begins when the Isolator is started. The main purpose of this task is to manage and route all
processing and I/O requests to the appropriate Isolator threads such as: ServInterface, DbInterface,
SnifInterface and SdifInterface. The MainTask is the parent thread and the other four threads (just
mentioned) are the subordinate threads. The MainTask will serve also as the Isolator executive task
that will monitor the status and events of all the Isolator threads and queues. All of the system message
logging of the Isolator subsystems is also handled by this task and are stored locally in a log file.

5.3 Application Server Interface (ServInterface):

The purpose of the ServInterface is to handle all the communications between the Application Server
and the Isolator. The NCC data, DAS data and Users data as well as data stored in SWSI database
pass through the ServInterface thread via the Application server on one end and the MainTask thread
on the other end. The communication protocol with the Application Server is strictly TCP/IP and three
ports will be assigned to route the data between the Isolator and the Application Server. The name of
the Application Server host and a base port number are required to connect to the Application Server.
The ServInterface will use a base port number to derive the required three port numbers to get the
secure socket connections with the Application Server. There will be default host name and base port
when the Isolator is started. These default parameters can be overridden by the system’s environment
variables where the Isolator is hosted. The ports are named respectively TP1, TP2 and TP3 and their
default assignment numbers are:

• TP1 = base port number + 0
• TP2 = base port number + 1
• TP2 = base port number + 2

Each port will handle a specific set of messages, alerts, requests and responses as defined below:

5.3.1 TP1 Port

TP1 port will be used mainly to accept all the incoming messages from the Application Server. Some of
TP1 messages originate from the NCC customers for delivery to the NCC and similarly some other
TP1 messages originate from the DAS customers for delivery to the DAS.

 6-5 453-SDS-SWSI

5.3.1.1 SNIF TP1 Messages

The incoming TP1 messages that are bound to SNIF (see Figure 5-4) are:
• Schedule Add Request (SAR) Messages
• Alternate SAR (ASAR) Messages
• Schedule Delete Request (SDR) Messages
• Replace Request (RR) Messages
• Wait List Request (WLR) Messages
• User Reconfiguration Request (Service_Reconfiguration_Request) Messages* noted as URRM

in the diagram below
• State Vector (SV) Messages
• TDRS Scheduling Window (TSW) Messages
• Multiple Ground Control Message Request (MGCMR) Messages (include the following)

ο User Reacquisition Request (User_Reacquisition_Request) Messages
ο Forward Link Sweep Request (Forward_Link_Sweep_Request) Messages
ο Forward Link EIRP Reconfiguration (Forward_Link_EIRP_Reconfiguration) Messages
ο Expanded User Frequency Uncertainty Request

(Expanded_User_Frequency_Uncertainty_Request) Messages
ο Doppler Compensation Inhibit Request (Doppler_Compensation_Inhibit_Request)

Messages

The SAR, ASAR, SDR, RR, WLR, and Service_Reconfiguration_Request message data will be stored
in respective tables in the SWSI database. Once the data has been successfully stored in the SWSI
database, the Isolator will send Key Information to the SNIF for further processing. Similarly, the SV
and TSW data will be stored locally in respective files.In this case, the Isolator will send TSW and SV
file information to SNIF. The MGCMR information is not stored in the SWSI database; this information
will be forwarded to the SNIF and SDIF. (see Appendix C for more details).

 6-6 453-SDS-SWSI

Figure 5-4 Data flow of TP1 Messages bound to SNIF/NCC

5.3.1.2 SDIF TP1 Messages

The incoming TP1 messages that are bound to DASCON (see Figure 5-5 and Figure 5-6) are:

• Resource Allocation Request (RAR) Messages

• Resource Allocation Deletion Request (RADR) Messages

• Resource Allocation Modification Request (RAMR) Messages

• Playback Request (PBKR) Messages

ISOLATOR

1

S
E
R
V
I
N
T
E
R
F
A
C
E

D
B
I
N
T
E
R
F
A
C
E

 SNIFINTERFACE

MAIN
TASK

SAR
ASAR
SDR
RR

WLR
URRM

SV
TSW

MGCMR
(Objects)

Application
Server

Key, File
Info. &
MGCMR
data

SAR
ASAR
SDR
RR

WLR
URRM

data
Local

Storage
(Flat files)

Key, File
Info. &
MGCMR
data

Objects

Objects

Key Info.

SV &
TSW data

SV &
TSW data

Database
Server

SNIF

SAR
ASAR
SDR
RR

WLR
URRM

data

 6-7 453-SDS-SWSI

• Playback Deletion Request (PBKDR) Messages

• Playback Modification Request (PBKMR) Messages

• Resource Availability Request (MnemonicRequest-RAV) Messages

• Playback Search Request (MnemonicRequest-PBKS) Messages

• Planned Events Request (MnemonicRequest-USM_List) Messages

• Event Details Request (MnemonicRequest-USM_SCC_List) Messages

• Service Reconfiguration Request (Service_Reconfiguration_Request) Messages * noted as

SERR in the diagram below

• Signal Reacquisition Request (User_Reacquisition_Request) Messages *noted as SigRR in the
diagram below

• State Vector (SV) Messages

The RAR, RADR, RAMR, PBKR, PBKDR and PBKMR data will be stored in respective tables in the
SWSI database (see Figure 5-5). Once the data has been successfully stored in the SWSI database,
the Isolator will send Key Information to the SDIF. In turn, SDIF will use the key Information to read
the data from the different tables in the SWSI database, format the data into XML documents and send
the resulting output to the DAS.

The RAV, PBKSReq, USM_List, USM_SSC_List, SerRR, SigRR and SV messages are forwarded
to the SDIF after updating their respective objects with a uniquely generated Request ID from the
SWSI database; the Request ID is an Oracle sequence number. All messages transmitted from SWSI
to DAS will have an incrementing Request ID. The Request ID will be kept in the SWSI database and
always be updated by the Isolator or by SDIF depending of the category of the TP1 messages. For
these messages just described (see Figure 5-6) the Isolator will request a new Request ID from the
SWSI database and update the object prior to sending it to the SDIF. For all the other messages
bound to DAS that have been stored by the Isolator in the SWSI database (see Figure 5-5), SDIF will
be responsible to update the request ID prior to transmitting these messages to DAS.

 6-8 453-SDS-SWSI

Figure 5-5 Flow of TP1 DAS Messages that get stored in SWSI database

ISOLATOR

1

S
E
R
V
I
N
T
E
R
F
A
C
E

 D
B
I
N
T
E
R
F
A
C
E

 S D I F I N T E R F A C E

MAIN
TASK

RAR
RADR
RAMR
PBKR

PBKDR
PBKMR

SV
(Objects)

Application
Server

Objects

Objects

Key Info.

Database
Server

SDIF
Key Info.

RAR
RADR
RAMR
PBKR

PBKDR
PBKMR

SV
(data)

RAR
RADR
RAMR
PBKR

PBKDR
PBKMR

SV
(data)

Key Info.

 6-9 453-SDS-SWSI

Figure 5-6 Flow of DAS Messages not stored in SWSI database

5.3.1.3 Users TP1 Messages

The last category of incoming TP1 messages are those from the SWSI or/and DAS users who are
requesting information that has been stored in the SWSI or the DAS database (see Figure 5-7). These
types of User Requests are:

• User Login Request (LoginObject)

• User Logout Request (LogoffObject)

ISOLATOR

1

S
E
R
V
I
N
T
E
R
F
A
C
E

D
B
I
N
T
E
R
F
A
C
E

 S D I F I N T E R F A C E

MAIN
TASK

RAV
PBKS

USM_List
USM_SSC_List

SerRR
SigRR

 (Objects)

Application
Server

Objects

Database
Server

SDIF

Objects*

Request ID
Request

New
Request
ID

Objects*

 6-10 453-SDS-SWSI

• Schedule Request Summary Request (MnemonicRequest – Schedule_Request_List) *noted as
SRL in the diagram

• Active Schedule Summary Request (MnemonicRequest-USM_List) *noted as USM in the diagram

• View SSC Request (MnemonicRequest-SSC)

• Modify SSC Request (ModifySSC)

• Other TBD User request (-----Req)

Figure 5-7 Flow of TP1 Common User Request Messages

ISOLATOR

1

S
E
R
V
I
N
T
E
R
F
A
C
E

D
B
I
N
T
E
R
F
A
C
E

 SDIFINTERFACE

MAIN
TASK

LoginObject
LogoffObject

MnemonicRequest
-SRL
-USM
-SSC

-ModifySSC
------Req
 (Objects)

Application
Server

Request
Objects

Database
Server

SDIF

USM

USM

Request
Objects

USM

 6-11 453-SDS-SWSI

The Active Schedule data for SWSI users is kept in the SWSI database, however, this is not the case
for DAS. The Active Schedule data for DAS users is only stored in the DAS database and therefore a
request must be forwarded to DASCON via the SDIF to ask for the DAS Active Schedule Summary.
When the Isolator receives an Active Summary Request (USM_List) and it finds that the user
requesting that data is a DAS user, the isolator will send a USM_List Request to SDIF to get the active
schedules from DASCON. The Isolator will wait for the receipt of the USM_List Response from
SDIF before merging the active schedule data from both NCC and DASCON. In the case where
SDIF did not respond to the request after a TBD time-out, the Isolator will send to the Application
Server only the active schedules from the NCC and an alert message reflecting the SDIF time-out
situation. The USM_List_SSC request will work the same way as what we’ve just describe for the
USM_List but by sending the detailed event information from both the NCC and DASCON.

5.3.2 TP2 Port

All the users’ login, logout and requests messages that were received from TP1 port will generate
responses that will be sent from the Isolator to the Application Server via TP2 port. TP2 will also be
used to transmit critical real time messages such as UPD messages to the Application Server. The
following figure (5-8) describes the flow of TP2 Messages.

 6-12 453-SDS-SWSI

Figure 5-8 TP2 Data flow Messages

User Request for data from the application server will be wrapped into MnemonicRequest objects.
Isolator responses to the application server will be wrapped into MnemonicData objects. The
mnemonic name given in these objects would indicate the type of data request/reply. A detail
description of the MnemonicRequest and MnemonicData objects with all the supported messages is
given in the SWSI Common Objects section in Appendix A.

5.3.3 TP3 Port

The third port TP3 will be used only to transmit the alerts messages to the Application Server. All the
alert messages from the Isolator, SNIF and SDIF are stored in the SWSI database. SNIF will be
responsible to store its generated alert messages directly into the SWSI database and at the same time

SNIF

Database
Server

ISOLATOR

2

S
E
R
V
I
N
T
E
R
F
A
C
E

D
B
I
N
T
E
R
F
A
C
E

 S N I F I N T E R F A C E

MAIN
TASK Application

Server

Key, File
Info. &
UPD data

Local
Storage

(Flat files)

RCTDM
TTM

GCMD
GCMS
AFN
SRM
USMs
data

RCTDM
TTM

Key, File
Info. &
UPD data

Clients Replies
Real-Time Messages

Objects
Requests

Objects
Requests

Replies
Objects

Replies
and R/T
Messages
Objects

SDIF S D I F I N T E R F A C E

DAS Responses
and UPD Status
(Objects)

RAV
PBKS

USM_List
USM_SSC_

List
UPD status

 6-13 453-SDS-SWSI

forward them to the Isolator for further transmission to the Application Server. However, the Isolator
will store SDIF generated alerts as well as Isolator generated alerts into the SWSI database. Figure 5-
8 describes the data flow of the Alert Messages.

Figure 5-9 TP3 Data Flow of the Alerts Messages

SNIF

Database
Server

ISOLATOR

 Alerts

3

D
B
I
N
T
E
R
F
A
C
E

MAIN
TASK

Application
Server

 SDIFINTERFACE

S
E
R
V
I
N
T
E
R
F
A
C
E

SDIF

Alerts

Alerts

Alerts

Alerts Alerts

Alerts

Alerts

Alerts

Alerts

Alerts

RAR
RADR
RAMR
PBKR

PBKDR
PBKMR

(Update data)

SNIFINTERFACE

 6-14 453-SDS-SWSI

Appendix C describes in detail the format of the alert messages between SNIF and the Isolator. SNIF
alert messages will be converted by the Isolator into alert objects conforming to the Alert class as
defined in the SWSI common classes and then transmitted as serialized Java object to the Application
server.

The ServInterface will be responsible to get the name and base port number of the Application Server,
to initiate its communication threads and to monitor their status. The ServInterface will create 3
subordinates threads each responsible for processing the data of the 3 ports naming TP1Thread for port
1, TP2Thread for port 2 and TP3Thread for port 3. All the threads will perform their respective I/O
processing independently and will exchange the data with the other Isolator threads/objects via their
parent task ServInterface. In turn, the ServInterface task will exchange data with other objects via its
parent task MainTask, thus following a top down hierarchy. All the threads are required for the normal
operation of the Isolator, which also means that all 3 sockets connections must be always up, and
running with the Application Server. When the connection of one of the port is lost, ServInterface task
will turn off the other active connections and will restart itself for new connections with the Application
Server. The log file will be updated with connection events that will indicate the time the connections
were made or lost. The exchange of data between the Isolator and the Application Server are done in
serialized objects and are described in Appendix A.

5.4 Database Interface (DbInterface):

The purpose of the Database Interface (DbInterface) is to store, retrieve and update SWSI data found
in the SWSI database. Data sent from the Application Server will be stored in the appropriate SWSI
database tables and requested data will be retrieved and sent to the ServInterface task for transmission
to the Application Server. The DbInterface task will connect to the SWSI database hosted on the same
local machine as the Isolator. The DbInterface requires the name of the Oracle data base driver, the
URL of the SWSI database instance, an authorized account name and password to the database.
Once connected, DbInterface will make JDBC calls to PL/SQL stored procedures for data storage,
retrieval and updates.

It is important to note that the Isolator, SDIF and SNIF will be storing data to the SWSI database. The
user data coming from the Application Server to the Isolator along with alert messages generated by the
Isolator are stored by the DbInterface task. All updates to the SWSI database by the Isolator, SDIF
and SNIF are synchronized by Oracle to avoid any loss or corruption of data. Both of the Isolators
and SNIF will be polling the database at a low priority to detect any new data stored by the other
subsystem.

5.5 SNIF Interface (SnifInterface):

The purpose of the SnifInterface is to handle all the communications between the SNIF and the Isolator.
The communication protocol with SNIF is strictly UDP and only one port will be assigned to route the
data between the Isolator and SNIF. The name of the host computer where SNIF is located and a
communication port number are both required exchanging data between both subsystems. As we’ve

 6-15 453-SDS-SWSI

mentioned before, SNIF and the Isolator will be located on the same platform; therefore, the default
name of the host platform for both will be referred as “localhost”. The default port number is set to
31416; the default port number can be overridden by changing the appropriate system environment
variable.

5.6 SDIF Interface (SdifInterface):

The purpose of the SdifInterface is to handle all the communications between the SDIF and the Isolator
itself. The communication protocol with SDIF is TCP/IP and only one connection port will be assigned
to route the data between the Isolator and SDIF. The Isolator will be the client side and SDIF will be
the Server Side. Similarly to SNIF, SDIF will also be collocated with the Isolator and therefore, the
default name of the host platform will be referred as “localhost”. The default port number to connect to
SDIF is set to 31417 but can also be changed via the setting of the system environment variables.

5.7 Logging

 The Islolator subsystem logs all the OS or database related errors in a log file. System messages are
also logged and are time-tagged along with the source of the thread from where they were issued. The
log file(s) can be viewed at anytime by SWSI developers for analysis and/or debugging. All the alerts
generated by Isolator are logged and then stored in the ALERT_Message database table.

 6-1 453-SDS-SWSI

Section 6. SWSI-NCCDS Interface Design

6.1 Overview

The SWSI-NCCDS Interface (SNIF) performs all electronic message-based communication with the
operational NCCDS and with the ANCC for performing Engineering Interface (EIF) testing. The SNIF
establishes and maintains all the TCP connections required for implementing the full customer message
interface as defined in the NCCDS/MOC ICD for full support customers. Separate sets of connections
are maintained for each group of missions as defined in the SWSI database. The SNIF is also
responsible for maintaining the active schedule in the SWSI database based on the Schedule Result
Message (SRM) and User Schedule Message (USM) responses received from the NCCDS. The
following sections describe the operating environment of the SNIF and the detailed design.

6.2 Operating Environment

SNIF is a multi-threaded "C" application that executes as a single Unix process under Solaris 7. SNIF
uses the POSIX thread Application Programming Interface (API), or pthreads, a standardized threading
implementation that allows asynchronous execution of concurrent tasks within a single application. The
primary benefit of threading to the SNIF application is to allow the efficient control of multiple TCP
socket connections without having to resort to a complicated mechanism of non-blocking I/O and
polling. A separate POSIX thread controls each connection. If a socket read is blocked because data
is unavailable, the thread is suspended to allow execution of other threads within the SNIF application.

Synchronization or communication between threads is provided by a mutual exclusion mechanism called
the mutex. The mutex allows for locking of data that is shared between threads.

The primary mechanism used by the SNIF for communication between threads is the message queue.
Since pthreads doesn't provide queueing, a custom package is used that uses mutexes for locking queue
data structures. The SNIF queue model is meant to roughly imitate a similar capability provided in the
old Ready Systems VRTX32 real-time embedded OS kernel. In general, it works by allowing threads
to "post" a message buffer to another thread's queue. A thread retrieves messages from its own queue
by "pending", which suspends the thread until a message arrives, or by "accepting", which does not
suspend the thread if its input queue is empty.

6.3 Detailed Design

The context diagram for the SNIF is shown in Figure 6-1. Communications with the Isolators is
according to the protocol described in Appendix C. Each Isolator will listen on a separate User
Datagram Protocol (UDP) port, while the SNIF will receive messages on a single UDP port. All
outbound messages will be sent to both Isolators, since the SNIF will have no knowledge about which

 6-2 453-SDS-SWSI

clients should receive a particular message. The Application Servers will be responsible for examining
the messages to determine which open or closed client(s) should receive the messages.

Schedule Results
Performance Data

GCM Status/Disposition

Schedule Requests
Active Schedule

User Reconfiguration (GCMR)
Alerts

Closed Isolator Messages

SWSI-NCCDS
Interface
(SNIF)

Isolator
(Closed
Clients)

NCCDS

SWSI
Database

TSW, SV

TTM, RCTD

Schedule Results
Performance Data

GCM Status/Disposition ANCC

Schedule Requests
TSW
SV

GCMR

Open Isolator Messages

Isolator
(Open

Clients)

TSW, SV

TTM, RCTD

Log File

Schedule Requests
TSW
SV

GCMR

Figure 6-1 SNIF Context Diagram

The SNIF communicates with both the operational NCCDS and the ANCC. A separate set of
connections is used for each facility.

The top-level data flow diagram is shown in Figure 6-2. Each bubble represents a functional process
that eventually decomposes into a number of primitive threads. The C program "main" is used to
initialize the software and create the appropriate threads. After "main" completes execution, each thread
runs independently. Communication between threads is primarily through message queues. Queues
provide a pipeline for messages to be passed between threads. All queue operations are performed by
functions provided within the SNIF application.

 6-3 453-SDS-SWSI

Alert messages are shown in the context diagram but are not shown in any of the lower level data flow
diagrams. Any SNIF thread is capable of generating an alert to be sent to the Isolators and stored in
the Database. The alerts are not shown so as to simplify the diagrams.

2.
NCCDS
Interface

3.
ANCC

Interface

Closed Isolator Messages

Open Isolator Messages

NCCDS I/F Database

ANCC I/F Database

Schedule Results
Performance Data

GCM Status/Disposition

Schedule Results
Performance Data

GCM Status/Disposition

Schedule Requests
TSW
SV

GCMR

Schedule Requests
TSW

SV
GCMR

TSW, SVTTM, RCTD

1.
Read

Isolator
Messages

NCCDS Isolator Messages In

ANCC Isolator Messages In

Open & Closed Isolator Messages Out

Open & Closed Isolator Messages Out

Figure 6-2 SNIF Level 0 Data Flow Diagram

A detailed description of each process and primitive thread is given below. A separate functional
process is provided for each of the NCC interfaces (NCCDS and ANCC). Data flow diagrams for
these processes are given in Figures 6-3 and 6-4. The processes are identical with the exception that
they each access a different database instance and communicate with a different NCC system. Only a
description of the NCCDS Interface is provided.

6.3.1 Read Isolator Messages

Read Isolator Messages is a thread that is primarily responsible for routing incoming Isolator messages.
The Read Isolator Messages thread listens for messages from both Isolators on a single UDP port. The
messages are routed to the appropriate NCC interface process depending on the routing indicator in the
message header.

6.3.2 NCCDS Interface

The NCCDS Interface process controls all communication with the NCCDS. Incoming Isolator
messages are received through the Read Isolator Messages thread. Outgoing Isolator messages are

 6-4 453-SDS-SWSI

sent directly to both the open and closed Isolators. A data flow diagram for the NCCDS Interface
process is given in Figure 6-3.

SAR
SDR

ASAR
RR

WLR

SRR

SRM
USM

TSW

SV

UPDR

UPD
RCTDM

TTM
AFN

GCMR

GCM S&D

2.1
Manage NCCDS
Communications

SCHEDULE_REQUEST

ACTIVE_SCHEDULE

USR_GCMR

SAR
SDR

ASAR
RR

WLR

2.2
Send

Schedule
Request

Status

2.3
Receive

Schedule
ResultSRM

USM

TSW filename

SV filename

UPD
AFN

RCTDM, TTM
GCMR

TSW

SV

RCTDM, TTM

Status

GCM S&D

Open & Closed Isolator Messages Out

NCCDS Isolator Messages In

2.6
Receive
pmdata

2.7
Send

GCMR

2.8
Receive

GCM S&D

2.4
Send
TSW

2.5
Send SV

Figure 6-3 NCCDS Interface Data Flow Diagram

Manage NCCDS Communications is the primary thread responsible for processing NCCDS messages.
The remaining threads are used to control the NCCDS connections as defined in Table 4-3 of the
NCCDS/MOC ICD. A separate thread is assigned for each service, with two threads required for the
reconfig (GCMR) service because data flow is bi-directional. Only single threads are needed for the
schStatus and pmData services because the Schedule Result Request (SRR) and User Performance
Data Request (UPDR) messages are treated simply as initialization messages to be transmitted when the
connection is first established. A separate instance of each thread is used for each NCCDS connection.

The connection control threads serve two functions. The first function is to establish and maintain
connections to the appropriate NCCDS services according to the configuration described in the
SCHEDULE_CONNECTION and REALTIME_CONNECTION Database tables. These

 6-5 453-SDS-SWSI

configurations are read at SNIF startup. Changes in the configuration will require a restart of the SNIF
application.

The connections for the schStatus, pmData, and reconfig services will be permanent connections. The
schReq, tswStore, and acqStore connections will be established only when there are requests to be
transmitted. The connections will be timed out after periods of inactivity as defined by the Database.
The other function of these threads is to read or write messages in eXternal Data Representation (XDR)
format on the connections being controlled. The messages exchanged with the Manage NCCDS
Communications thread are in the raw formats as defined in the ICD.

6.3.2.1 Manage NCCDS Communications

Manage NCCDS Communications is a single thread that performs the majority of the processing of
messages passing through the SNIF. For messages outbound to the NCCDS, the Manage NCCDS
Communications thread receives information about a message or request from an Isolator message and
database entry and constructs the NCCDS message in the appropriate format. For messages inbound
from the NCCDS, the Manage NCCDS Communications thread interprets the message for immediate
processing as in the case of SRMs and USMs, reformats the message for transfer to the client as in the
case of User Performance Data (UPD), or generates a SWSI-formatted alert as in the case of Ground
Control Message (GCM) Status and Disposition (S&D) and Acquisition Failure Notification (AFN).

The Manage NCCDS Communications thread will poll the Database periodically for requests that have
been saved but not transmitted. This is to compensate against the loss of an Isolator UDP message that
indicates storage of a request message. The file system directories holding TDRSS Scheduling Window
(TSW) and State Vector (SV) messages will be similarly polled so that messages aren’t held indefinitely
by SNIF due to lost Isolator messages.

Following is a description of how each NCCDS message is processed by the Manage NCCDS
Communications thread.

6.3.2.1.1 Schedule Request

Schedule request messages (SAR, SDR, ASAR, RR, WLR) are received by the SNIF from the
Isolator in the form of a requestId key referencing a record in the SCHEDULE_REQUEST table. The
NCCDS message is constructed from this information. The message is queued to the appropriate Send
Schedule Request thread and the status of the request is changed to QUEUED.

6.3.2.1.2 Schedule Result Message

Schedule Result Messages (SRMs) are received from the Receive Schedule Result thread. The status
of the referenced request is updated in the SCHEDULE_REQUEST table in the database based on the
result and explanation codes received in the SRM. If the codes indicate a deletion and the event had
been previously scheduled, then the event is deleted from the ACTIVE_SCHEDULE table. In the case
of all SRMs received, an alert is sent to the Isolators for display on the client(s).

 6-6 453-SDS-SWSI

6.3.2.1.3 User Schedule Message

User Schedule Messages (USMs) are received from the Receive Schedule Result thread. The USM is
used to add an event to the ACTIVE_SCHEDULE and associated database tables. If an event is
stored in ACTIVE_SCHEDULE with the same event ID, then that event is overwritten with the
information from the new USM. An alert is sent to the Isolators for each USM received.

6.3.2.1.4 TDRS Scheduling Window Message

TDRS Scheduling Window (TSW) messages are received by the SNIF from the Isolator in the form of
a filename. The TSW is validated to ensure that the SUPIDEN matches the SIC from the Isolator
message header. The filename information is then passed through to the appropriate Send TSW thread
as determined by the Isolator message SIC.

6.3.2.1.5 State Vector

State Vector (SV) messages are received by the SNIF from the Isolator in the form of a filename. The
SV is validated to ensure that the SIC in the vector matches the SIC from the Isolator message header.
The filename information is then passed through to the appropriate Send SV thread as determined by
the Isolator message SIC.

6.3.2.1.6 User Performance Data

User Performance Data (UPD) messages are received from the Receive pmdata thread. The UPDs are
parsed and reformatted from binary data into name-value pairs. The name-value pairs are stored in PD
messages that are sent to the Isolators. The PD message types are as described in the UPD database
table.

6.3.2.1.7 Acquisition Failure Notification

The Acquisition Failure Notification (AFN) is received from the Receive pmdata thread and is sent to
the Isolators as an alert.

6.3.2.1.8 Return Channel Time Delay Message

The Return Channel Time Delay Message (RCTDM) is received from the Receive pmdata thread. The
message is stored in raw form in a file. The filename information is sent to the Isolators.

6.3.2.1.9 Time Transfer Message

The Time Transfer Message (TTM) is received from the Receive pmdata thread. The message is
stored in raw form in a file. The filename information is sent to the Isolators.

 6-7 453-SDS-SWSI

6.3.2.1.10 Ground Control Message Request

User Reconfiguration Request messages, which are a type 98/04 Ground Control Message Request
(GCMR), are received by the SNIF from the Isolator in the form of a msgId key referencing a record in
the USR_GCMR table. The NCCDS message is constructed from this information. The message is
queued to the appropriate Send GCMR thread and the status of the request is changed to QUEUED.

The remaining GCMR message types are received from the Isolator as messages described by name-
value pairs. The NCCDS message is constructed from the name-value pairs. The message is then
queued to the appropriate Send GCMR thread.

6.3.2.1.11 Ground Control Message Status and Disposition

Ground Control Message (GCM) status and disposition messages are received from the GCM S&D
thread. The status of the referenced request is updated in the USR_GCMR table. If the referenced
GCMR is a User Reconfiguration Request and the GCMR was accepted, then the USR_GCMR table
is updated to reflect the new parameter settings. An alert is sent to the Isolators for each GCM status
and disposition received.

6.3.2.2 Send Schedule Request

The Send Schedule Request thread sends messages to the NCCDS through the schReq service. A
connection is established only when there is a request to be transmitted. The connection is closed after
a period of inactivity. Schedule request messages (SAR, SDR, ASAR, RR, WLR) are received from
the Manage NCCDS Communications thread. The User ID and Password are inserted into the
message. If a connection is successfully established and the message is transmitted, then the status of
the request in SCHEDULE_REQUEST is changed to TRANSMITTED and an alert is sent to the
Isolator indicating a successful transmission.

6.3.2.3 Receive Schedule Result

The Receive Schedule Result thread receives messages from the NCCDS through the schStatus
service. A permanent connection is maintained on this service. When first established, a Schedule
Result Request (SRR) message is constructed from configuration information in the database and is sent
to the NCCDS. Schedule Result Messages (SRMs) and User Schedule Messages (USMs) received
on this connection are sent in raw form to the Manage NCCDS Communications thread.

6.3.2.4 Send TDRSS Scheduling Window

The Send TDRSS Scheduling Window (TSW) thread sends messages to the NCCDS through the
tswStore service. A connection is established only when there is a message to be transmitted. The
connection is closed after a period of inactivity. TSW messages are received from the Manage
NCCDS Communications thread in the form of a filename. The User ID and Password are inserted
into the message. If a connection is successfully established and the message is transmitted, then the file
is moved to an archive directory and an alert is sent to the Isolator indicating a successful transmission.

 6-8 453-SDS-SWSI

6.3.2.5 Send State Vector

The Send State Vector (SV) thread sends messages to the NCCDS through the acqStore service. A
connection is established only when there is a message to be transmitted. The connection is closed after
a period of inactivity. SV messages are received from the Manage NCCDS Communications thread in
the form of a filename. If a connection is successfully established and the message is transmitted, then
the file is moved to an archive directory and an alert is sent to the Isolator indicating a successful
transmission.

6.3.2.6 Receive pmdata

The Receive pmdata thread receives messages from the NCCDS through the pmData service. A
permanent connection is maintained on this service. When first established User Performance Data
Request (UPDR) messages are constructed from configuration information in the database and are sent
to the NCCDS. A separate UPDR is sent for each SUPIDEN supported on that connection. All
UPDRs sent will be to enable UPD transmission. UPDs, Acquisition Failure Notification (AFN),
Return Channel Time Delay Messages (RCTDMs), and Time Transfer Messages (TTMs) received on
this connection are sent in raw form to the Manage NCCDS Communications thread.

6.3.2.7 Send Ground Control Message Request

The Send Ground Control Message Request (GCMR) thread sends messages to the NCCDS through
the reconfig service. A permanent connection is maintained on this service. GCMRs are received from
the Manage NCCDS Communications thread. The User ID and Password are inserted into the
message. If the message is successfully transmitted, then an alert is sent to the Isolator indicating a
successful transmission. For type 98/04 GCMRs the status of the request in USR_GCMR is changed
to TRANSMITTED.

6.3.2.8 Receive Ground Control Message Status and Disposition

The Receive Ground Control Message Status and Disposition (GCM S&D) thread receives message
from the NCCDS through the reconfig service. GCM S&D messages received on this connection are
sent in raw form to the Manage NCCDS Communications thread.

6.3.2 Logging and Delogging

The SNIF logs all formatted messages exchanged with the NCCDS, as well as significant events and
errors such as connection establishment and loss. The logs will use the NCCDS Central Delogger
(NCD) format. The NCCDS Protocol Gateway (NPG) delogger will be used to delog and display
previously logged data.

The SNIF will provide an additional level of logging to use in debugging application or system problems.
This logging will be under the control of a debug flag that is set when the application is invoked. All
Isolator messages will be logged, as well as additional actions such as updates to Database tables,

 6-9 453-SDS-SWSI

updates to SNIF global tables, and queue message posts and pends. Debug output will be written to a
text file for viewing and editing by standard Unix utilities.

SAR
SDR

ASAR
RR

WLR

SRR

SRM
USM

TSW

SV

UPDR

UPD
RCTDM

TTM
AFN

GCMR

GCM S&D

3.1
Manage ANCC

Communications

SCHEDULE_REQUEST

ACTIVE_SCHEDULE

USR_GCMR

SAR
SDR

ASAR
RR

WLR

3.2
Send

Schedule
Request

Status

3.3
Receive

Schedule
ResultSRM

USM

TSW filename

SV filename

UPD
AFN

RCTDM, TTM
GCMR

TSW

SV

RCTDM, TTM

Status

GCM S&D

Open & Closed Isolator Messages Out

ANCC Isolator Messages In

3.6
Receive
pmdata

3.7
Send

GCMR

3.8
Receive

GCM S&D

3.4
Send
TSW

3.5
Send SV

Figure 6-4 ANCC Interface Data Flow Diagram

 -1 453-SDS-SWSI

7. SWSI-DAS Interface Design

7.1 Overview

The SWSI-DASCON Interface (SDIF) performs all electronic message-based XML-based
communication with DASCON (See Figure 7-1). The SDIF establishes and maintains a TCP
connection required for implementation of XML messaging interface with DASCON as well as SDIF
maintains another TCP connection with Isolator for passing messages from/to Isolator/DASCON. The
SDIF is responsible for converting serialized objects coming from Isolator into XML structures, which
are sent to DASCON, and converting XML structures coming from DASCON into serialized Java
objects for sending them to Isolator. The SDIF is also responsible for logging Alert messages and other
messages considered to be "Alert" messages into database. The following sections describe the detailed
design of the SDIF.

Figure 7-1 SDIF Context Diagram

 -2 453-SDS-SWSI

7.2 SDIF Functionality

The SDIF's functionality can be broken into three main pieces:

• Handling outgoing traffic – Isolator to DASCON Interface

• Handling incoming traffic – DASCON to Isolator Interface

• Contacting database for logging and periodic message retransmission.

The following sections will describe in detail listed above tasks.

7.2.1 Isolator to DASCON Interface

The SDIF keeps a TCP connection to Isolator in order to exchange messages back and forth. On this
connection Isolator is delivering messages as serialized Java objects to the SDIF. When SDIF receives
a message it de-serializes it into respective Java object and decides what action should be taken
according to a message. If a message receives wrapped into mnemonic message object then the SDIF
extracts actual message from it.

7.2.1.1 Detailed design

The messages flowing from Isolator to DASCON through SDIF can be broken down into three
categories with the appropriate actions taken (See Figure 7-2):

• Service Allocation Messages – the message is wrapped into mnemonic object. The message
itself contains specification of primary key by which the message can be found in the database.
The SDIF finds it in the database and converts it into respective XML instance. The XML
instance is run through validating XML parser to make sure the XML is valid according to
SWSI-DASCON XML Schema definition. If XML instance is invalid, then a SWSI alert
message is generated back to Isolator and logged to database. Otherwise transmission of the
message to DASCON is tried. If transmission is successful, then the SDIF sets the database
field on the record for this message to transmitted status. If transmission fails, then SDIF's
retransmission thread will be responsible for trying to retransmit the message every repeat
interval (configurable parameter).

• State Vectors – the message is wrapped into mnemonic object. The message itself contains
specification of primary key by which the state vector can be found in the database. SDIF
fetches the proper state vector (only DASCON needed fields) from the database and
constructs it into appropriate XML instance. The XML instance is run through validating XML
parser to make sure the XML is valid according to SWSI-DASCON XML Schema definition.
If XML instance is invalid, then a SWSI alert message is generated back to Isolator and logged
to database. Otherwise transmission of the message to DASCON is tried. If transmission is
successful, then the SDIF sets the database field on the record for this message to transmitted

 -3 453-SDS-SWSI

status. If transmission fails, then SDIF's retransmission thread will be responsible for trying to
retransmit the message every repeat interval (configurable parameter).

• All other messages are queued. As each message is de-queued from the queue, it is converted
to the appropriate instance of XML. The XML instance is run through validating XML parser to
make sure the XML is valid according to SWSI-DASCON XML Schema definition. If XML
instance is invalid, then a SWSI alert message is generated back to Isolator and logged to
database. Otherwise transmission of the message to DASCON is tried. If transmission fails,
then a SWSI alert message is generated to Isolator indicating that there was problem with
transmission.

7.2.2 DASCON to Isolator Interface

The SDIF keeps a TCP connection to DASCON in order to exchange messages back and forth. On
this connection DASCON delivers messages to SDIF as XML Instances conforming to SWSI-
DASCON XML Schema Definition. When SDIF receives an XML Instance formatted message, it runs
it through XML validating parser using SWSI-DASCON XML Schema Definition. If the instances
passes validation test, then further actions are taken as described in the next section, otherwise SWSI
Alert is generated and send to Isolator as well as logged to the database.

7.2.2.1 Detailed Design

The messages flowing from DASCON to Isolator through SDIF can be broken down into three
categories with the appropriate actions taken (See Figure 7-3):

• "Pure" Alert Messages – the SDIF logs such messages to database, converts them from XML
to SWSI Alert message and transfers it to Isolator.

• Messages that are alerts according to the matrix - the SDIF logs such messages to database,
converts such messages from XML to SWSI Alert messages and sends them to Isolator.

• All other messages are converted from XML to respective SWSI message type and transferred
to Isolator

7.2.3 Retransmission Thread

As part of SDIF's execution, separate Thread (Retransmission Thread) is launched to handle the task of
re-transmitting those messages that failed to transmit at the original request time (when a message first
received from Isolator). The Retransmission Thread queries database every repeat interval (configurable
parameter) for records with saved status (that is saved but not transmitted messages). If such records
found, then Retransmission Thread constructs an appropriate XML instance for each message and tries
to retransmit it to DASCON. If message expired and re transmission still failed, then the Retransmission
Thread generates SWSI Alert message back to Isolator indicating that transmission failed and message
expired (See Figure 7-4).

 -4 453-SDS-SWSI

Figure 7-2 Control Logic Overview

 -5 453-SDS-SWSI

Figure 7-3 Detailed Control Logic

 -6 453-SDS-SWSI

Figure 7-4 Retransmission Control Logic

 -7 453-SDS-SWSI

7.3 Database Interface

To database access is done using standard JDBC 2.x protocol. The SDIF will be updating database
tables (TBD) to set flags retransmission flags.

7.4 Support for test and operational modes

The SDIF can support test and operational modes. The SDIF achieves this capability by instantiating
multiple time's subparts of itself that are responsible for communication with DASCON and Database.
Those instances are different by parameters supplied to them (e.g. Host and port information). When a
message from Isolator with a flag indicating test mode comes to the SDIF, then the SDIF will contact
test database and messages will not be forwarded to operation DASCON, but rather just dropped or
forwarded to DASCON simulator when one is available. If a message coming from Isolator does not
have test flag set on, then the SDIF will operate in its normal mode contacting operation database and
DASCON itself.

 -1 453-SDS-SWSI

Section 8. Database Design

8.1 Design Principles and Guidelines

This design follows the generally accepted relational database design principles. All the data is stored in
it’s natural Oracle type in the database; e.g. all the absolute date is stored in Oracle’s “Date” type,
relative times are stored in Number format and variable length strings are stored as the varchar2 type.To
allow for user definable screens, some layout information is included in the database. This information
includes the display order number, position, and other information to be used by the GUI screen
builder. A SWSI developed Stored Procedures are used to insert into and make updates to all the
dynamic data. Some of the advantages of using the Stored Precedures are that the complexity of the
logical schema is hidden from the application layer, all the business rules are encapsulated in a cenral
place, and the database integity/consistency is assured. The use of the Stored Procedure provides
enhanced performance due to the reduction of independent transacations and also gives a simplified
view of the schema to the application.

8.2 The SWSI Database Design

8.2.1 Overview

Figure 8-1 through 8-3 shows the SWSI database structure in entity-relationship notation and Figure 8-
4 shows the table views created to get better performance and for ease of use by the application. The
relationships are implemented by using primary keys and foreign key constraints in a straightforward
manner. Some tables hold static information and others are dynamically updated by SWSI application.
The SWSI data administrator is responsible for the data in the static tables. Some tables are semi-static
tables, meaning SWSI data administrator is responsible for initiallly setting them up and the SWSI
application may modify some of the contents. The application software makes the calls to the Stored
Prcedures to modify dynamic tables. Appendix G summarizes the tables that are defiend in the SWSI
schema.

The information in the static tables is used for building display panels, processing NCCDS messages
and storing other static data like TDRS names, SICs, SUPIDENS.

The SWSI_USER table contains information about each user of SWSI. It also contains security-related
information like IP address of where the connection is made from, account expiration time, number of
failed login attempts, password expiration time. Each user is assigned a group of SICs that he/she is
responsible for supporting. The SIC table has all the SICs SWSI supports and the SUPIDEN table has
one-to-many relationship with the SIC table. There can be multiple users supporting the same SIC.

The SSC table contains service specification code (ssc code) assigned by NCCDS for each customized
configuration settings for each service type. It also contains predefined number of ssc codes to be used

 -2 453-SDS-SWSI

with requests made for DAS. Every sscCode for each service type has multiple service parameters with
a default value for each parameter. Only priviledged SWSI user is allowed to modify default values for
any of the DAS SSC codes.

The SSC_PARAM table contains default values of all the parameters for each service type supported
by SWSI. The SWSI supports all the service types supported by NCC and DAS. The parameter
values for the NCC supported service types are manually synchronized with the NCCDS/ANCC
database, while they are manually entered by the SWSI data adminisrator for DAS services. The
PROTOTYPE_EVENT_CODE table is also manually synchronized to match the prototype ids with the
NCCDS/ANCC database.

The SERVICE_PARAM table contains information for generating SWSI display panels and for
processing NCCDS messages. It contains for example display order, display as (i.e. text box, drop
down list), default values, parameter location in the USM message. The default values for each
parameter is obtained from the NCCDS/ANCC database and procedurally stored in this table. The
SERVICE_TYPE table contains all the valid service types supported by SWSI. . The UPD tables
contain information about processing and displaying UPD messages.

The ALERT_MESSAGE table holds all the alerts received or generated by SWSI for . The
swsicomponentid field identifies the source of an alert. The SCHEDULE_CONNECTION and
REALTIME_CONNECTION tables are used to establish and manage connections with
NCCDS/ANCC.

All the Schedule Requests submitted by the SWSI users are kept in the REQUEST and SAR tables.
The REQUEST table contains requests made by a user for requesting resources for TDRS support
from NCCDS (e.g. SAR, SDR, ASAR, RR) and from DAS (e.g. RAR, RADR, RAMR, PBKR,
PBKDR, PBKMR). The SR_SERVICE table is a child of SAR table and contains all the services
associated with each add event scheduled. The SR_PARAMS table contains all the parameters
specified in the SSC code used in the service. The parameters that are changed by the user
(respecifiables) are flagged to facilitate construnction of a SAR message. The requestId field in
REQUEST is tied to Oracle’s sequence counter and is incremented for each new record stored in the
table.

The responses to the Schedule Requests (USMs) are stored in the ACTIVE_SCHEDULE and it’s
associated tables. The user Reconfiguration Requests (User GCMRs) are kept in the USR_GCMR
table. The GCMR_PARAM table contains only the parameters changed by the user during a
reconfiguration request. When a user makes a request for a GCMR, ACTIVE_SCHEDULE is
searched to find the parameter values for the requested service (TDRS, SUPIDEN, service type & link
number). The value is overridden if the parameter is also found in GCMR_PARAMS. The last
accepted value found is returned.

 -3 453-SDS-SWSI

Figure 8-1 SWSI Database Schema (part 1 of 3)

 -4 453-SDS-SWSI

Figure 8-2 SWSI Database Schema (part 2 of 3)

 -5 453-SDS-SWSI

Figure 8-3 SWSI Database Schema (part 3 of 3)

 -6 453-SDS-SWSI

Figure 8-4 SWSI Database Table Views

 -7 453-SDS-SWSI

8.2.2 Stored Procedures

8.2.2.1 SWSI_ActiveSchedule_pkg

Purpose: This package encapsulates a set of interface procedures for inserting active schedule records
into the SWSI database. The application can use these procedures to simplify these operations and, in
turn, isolate the underlying logical database representation from the application.

The following interface procedures are provided:

AddUSM - insert an active schedule record, which represents the header information of an
NCC User Scheduling Message (USM).

AddService - insert an active schedule service record, which represents one of the services in
the body of a USM. A USM can contain one or more services.

AddServiceParam - insert an active schedule service parameter record. An active schedule
service can include zero or more "respecified" service parameters. Each service parameter is
represented as a keyword:value pair, both stored in text format.

UpdateStatus - update the StatusPending field of an Active_Schedule if a Delete or Replace
request was issued for a related SAR.

Purge - Purge the active schedule of events older than a specified time.

 -8 453-SDS-SWSI

8.2.2.2 SWSI_ScheduleRequest_pkg

Purpose: This package encapsulates a set of interface procedures for inserting NCC and DAS request
records into the SWSI database. The SWSI/Isolator uses these procedures to simplify these
operations and, in turn, isolate the underlying logical database representation from the application.

The following interface procedures are provided:

AddSAR - insert a schedule request record, which represents the header information of an
NCC User Scheduling Message (SAR) or a DAS Resource Allocation Request (RAR).

AddService - insert a schedule request service record, which represents one of the services in
the body of a SAR (or RAR). A SAR can contain zero or more services. A RAR contains one
service.

AddServiceParam - insert a schedule request service parameter record. A schedule request
service can include zero or more "respecified" service parameters. Each service parameter is
represented as a keyword:value pair, both stored in text format.

AddPlaybackRequest - insert a DAS Playback request into the Request table. The request
includes one playback time and referenced SAR request ID. Additional playback times and
referenced SARs can be added by invoking AddPlaybackEvent for each additional playback
time period.

AddWaitListRequest - Add a pending SAR to the NCC wait list. This procedure sets the
WaitListExpiration time of the related SAR. If that request is the head of a chain of SARs, then
the WaitListExpiration time is replicated to all SARs in the chain.

AddDeleteRequest - Insert a schedule delete request to the SWSI database. This is an SDR
for NCC requests and RADR for DAS requests.

Purge - Purge schedule and playback requests older than a specified time. As a precaution, no
events are purged that are newer than yesterday.

 -9 453-SDS-SWSI

8.2.2.3 SWSI_ScheduleResponse_pkg

Purpose: This package encapsulates a set of interface procedures for handling responses for schedule
requests from either NCC or DAS. The SWSI/SNIF uses these procedures to simplify these
operations and, in turn, isolate the underlying logical database representation from the application.

The following interface procedures are provided:

UpdateStatus - Update a schedule request status and/or result explanation code. If the original
request was an NCC Schedule Delete Request and the response is an SRM granting the
request, then this procedure also deletes related records from the Active Schedule.

 -10 453-SDS-SWSI

8.2.2.4 SWSI_GCMR_pkg

Purpose: This package encapsulates a set of interface procedures for inserting GCMR records into the
SWSI database. The application can use these procedures to simplify these operations and, in turn,
isolate the underlying logical database representation from the application.

The following interface procedures are provided:

AddGCMR - insert a GCMR record, which represents the header information of an NCC
Ground Control Message (GCM). The caller may furnish either
(TDRS + Supiden + SSCcode + Time), or
(SIC + ActiveSchedule.EventID + Service_Number)

AddGCMRparam - insert a GCMR parameter record. A GCMR can include zero or more
"respecified" service parameters. Each service parameter is represented as a keyword:value
pair, both stored in text format.

UpdateStatus - Update the status of a GCMR in response to a Schedule Result Message
(SRM) from NCC.

 -11 453-SDS-SWSI

8.2.2.5 SWSI_SSCedit_pkg

Purpose: This package encapsulates an interface procedure for editing DAS SSC parameters.

The following interface procedure is provided:

EditSSCparam - Alter the default value of an existing DAS SSC parameter.

8.3 Database Configuration

The estimated minimum size for the SWSI database is 65 Mbytes for the data for ten spacecraft, plus
additional space for messages, alerts, etc. Other space is also required for rollback segments and the
System Global Area. At this time it is better to use the initially implemented database, either for
analytical estimates or to populate it with dummy data for a number of spacecraft, rather than trying to
refine the a priori sizing estimates.

8.4 Database Maintenance

8.4.1 Synchronization with NCCDS

The Service Specification Codes (SSCs) for the SWSI customers only, the service parameters, UPD
parameters and TDRS names will be imported from the NCCDS to create the initial database. The
information about the DAS SSC codes will be obtained from the DAS project and will be stored in the
SWSI database by the SWSI data administrator. Subsequent synchronization will be required when any
of this data is changed in the NCCDS. Procedures will be established to notify the SWSI operations of
the need for an update. The method for updating the SWSI data will be determined later; it could be
manual, through a PL/SQL session, rather than reloading the entire set of data from the NCCDS.
Changes to this data are expected to be infrequent.

8.4.2 Purging

This database will require periodic purging of old data, specifically the schedule requests, active
schedule, messages and alerts. Scripts will be developed to perform these functions. The frequency of
purging will depend on the number of users, the database size, and the physical disc space available for
the database.

8.4.3 Backup and Recovery

To protect the SWSI database from loss of data due to system failure, hardware failure, or media
failure, a backup and recovery plan will be implemented utilizing Oracle’s Enterprise Manager tool to
perform periodic database backups as required. The Enterprise Manager allows for the automation of
online hot backups of the database, and keeps track of the location, and the latest version of the backed

 -12 453-SDS-SWSI

up files. By keeping track of the latest version and location of the database files, the Enterprise Manager
can speed up the recovery process.

8.5 Operational Considerations

SWSI will not have any record of Schedule Add Request (SAR) initiated outside of SWSI. However,
if a Schedule Delete request is made outside of SWSI on a SAR originally made from within SWSI and
is accepted by the NCCDS, the corresponding request or event will be marked as deleted in the SWSI
database.

 9-1 453-SDS-SWSI

Section 9. TUT Server

The TUT World Wide Web (WWW) Server provides information about unscheduled TDRS
resources. It consists of start and stop times of unscheduled use of the Single Access (SA), Multiple
Access Forward (MAF), and S-band Multiple Access Forward (SMAF) antennas, and Multiple
Access Return (MAR) and S-band Multiple Access Return (SMAR) links for each TDRS. This data is
essentially the unused time in the schedule, with a few adjustments due to flexible events with flexible
start and stop times and/or flexible resources.

The customer who desires to view the TUT information uses a WWW browser to access the TUT web
address. A query page is returned, on which the customer may select the time periods, services and
TDRSs for the desired TUT information. When the customer selects the Submit button on the page, the
query is sent to the TUT Server, which extracts the specified information based on the query, formats it
on a Hypertext Markup Language (HTML) page, and returns it to the customer.

The NCCDS TUT Server provides this service only to customers located on the Closed IONET. The
SWSI will extend the service to customers on the Open IONET and Internet by mirroring it to the
Open SWSI Servers. The Closed SWSI Server will periodically upload the raw TUT data file and
pass it through the NISN Secure Gateway in order to maintain timely TUT information on the open
networks.

The Closed SWSI Server will periodically run a Java command-line web-client (TUT Proxy Client) to
retrieve the raw TUT information file. This TUT Proxy Client will run as a Unix cron job on the Closed
SWSI Server. The TUT Proxy Client will then initiate a connection to a stand-alone process (TUT
Proxy Server) running on the Open SWSI Server. The TUT Proxy Server will listen for connections
from the TUT Proxy Client on a dedicated TCP Port all the time. The TUT Proxy Server accepts the
connection and stores the raw TUT data file in the proper web server directory. The updated TUT data
is now available to be viewed by users on the Open IONet by the methods described previously.

 10-1 453-SDS-SWSI

Section 10. Security

10.1 Security Requirements

SWSI will adhere to the following security requirements:

• NASA Procedures and Guidelines (NPG) 2810.1, Security of Information Technology -
Mission (MSN) category of NASA information, August 1999

• Security Plan for the Network Control Center, NCC 98, 451-SP-NCC/1998

• IP Operational Network (IOnet) Security Plan, 290-003, September 1999

Ideally, NASA should be the digital Certificate Authority (CA). Until NASA/GSFC becomes a
certificate authority, the SWSI project may have to generate its own certificates. There is a possibility
that multiple certificate authorities may need to be supported.

10.2 Security Model

The SWSI Security Model will use a COTS toolkit for the following:

• Protocol:
• Secure Socket Layer (SSL) version 3 protocol is used to provide strong security between

the Client and Application Server
• SSL is a well established, highly tested, and widely used protocol

• Authentication:
• Strong Client authentication using signed digital certificates from a certificate authority (CA)
• Strong Application Server authentication using signed digital certificates from a CA

• Level of Security:
• Secure strong encrypted session key exchange
• Ability to change session keys during a session
• Resists “Clear Text Attacks” by using large session cipher keys (where allowed by law)
• Defeats “Replay Attacks” by using one-time unique numbers, as part of each message,

associated with each connection id.
• Defeats “Man In The Middle Attacks” by the use of CA signed Application Server

certificates

• Flexibility:
• Security is implemented at the application level, allowing complete customization of the

security model by the applications developer
• Numerous cryptographic algorithms may be used by SSL, with minimum maintenance costs
• Complete source code is available for the toolkit and the cryptographic algorithms

 10-2 453-SDS-SWSI

• Portability:
• SSL toolkit is written in Java, and is portable to any platform supporting Java 1.0.2, Java

1.1, and Java 2
• The Client and Application Server components may reside on different hardware platforms,

running different operating systems

• Implementation:
• All Clients will be required to present a verifiable certificate from a trusted CA (TBD) to the

SWSI Application Server
• The SWSI Application Server will present a verifiable certificate from a trusted CA (TBD)

to each Client
• The SWSI Client applications and SWSI Application Server will verify each other’s

certificates, and upon successful verification, will establish a secure SSL connection

10.3 Security Features

Security features coded into SWSI include the following (see the Security Plan for Space Network
Web Services Interface, 452-SP-SWSI, May 10, 2000 for additional information):

1. Enforce Client password length/constraints/change frequency.

• Minimum length 8 characters (configurable) – Isolator enforced

• (configurable) of the following 4 criteria must exist (Isolator enforced):
• One capital letter
• One lower case letter
• One numerical character
• One non-alphanumeric character

• Changed every 90 days (configurable) – Isolator enforced

Protocol:

When a user attempts login, the Isolator will check the password file and determine if a new
password is required. The Isolator will send the Client a request for a new password, if a
new password is required. The user must be able to provide his old password, and
generate a new password using the criteria supplied by the Isolator, and satisfying the full
criteria listed above. The Isolator will validate the user’s supplied old password based on
the password file. The Isolator will also quality check the new password to insure that it
uses the above criteria. Either an error will be sent to the Client or the password will be
accepted and stored in the password file. The password file will be updated to reflect
when a new password will be required. A deactivated account will not be prompted for a
new password. A new or re-activated account will always prompt for a new password.
The user should have the ability on the Client side to initiate a password change. Such a
request will be handled at login time, and follow the above protocol.

2. Restrict number of failed login attempts.

 10-3 453-SDS-SWSI

• The Isolator should only allow a maximum of 3 (configurable) failed login attempts, after which a
user’s account will be deactivated by putting a flag in the password file. An error is sent to the
Client.

• The system administrator can re-activate a user account, with a new password, using the
password management utility (needs to be written). The user will need to change his password
immediately upon first login.

3. Utility to manage password file.

• The password “file” may actually be a table in the database.

• Develop a GUI based utility for password management.

• The utility should allow users to be listed, added, deleted, deactivated, re-activated.

• The file will maintain a userid, encrypted password, name, phone number, activation status flag,
password change date, passphrase change date, and possibly other fields.

• The utility will quality check the password for new users, as detailed in item #1.

• A re-activated user will prompt for a new password from the system admin, which will quality
check the password, as detailed in item #1.

• The password change date will be changed to the current date for new and re-activated users,
forcing users to enter new passwords upon first login.

4. Audit files.

• All logins (successful or failed) shall be logged.

• A separate file must be maintained for the unsuccessful login attempts.

• Client and Application Server activities will be logged for auditing purposes

• The Application Server will have some control over the granularity of logging other data.

5. Isolator

• The SWSI Isolator will validate all requests from each SWSI Client application for adequate
authority

 B-1 453-SDS-SWSI

Appendix A – Common Classes

Data will be passed between the SWSI Client, Application Server, and Isolator subsystems using
serializable, common objects. This data will be passed over sockets using Object Streams. Classes
used for common objects will provide a pair of get and set methods for each data item in the class. This
will allow access to these data items. A class diagram for most classes is given. These objects may
include instances of other objects, as shown in the class diagrams. Table A-1 presents the list of classes
used to transfer data.

Class Build originator notes
LoginObject 1 Client See Figure A-1
SetupObject 1 Isolator See Figure A-4
LogoffObject 1 Client See Figure A-1
LoginFailed 1 Isolator See Figure A-3
ChangePasswordRequest 1 Isolator See Figure A-3
ChangePassPhraseRequest 1 Isolator See Figure A-3
PasswordChanged 1 Client See Figure A-3
PassPhraseChanged 1 Client See Figure A-3
ChangeResponse 1 Isolator See Figure A-3
IsoConnectionStatusChanged 1 Server See Figure A-3
BackendConnectionStatusChanged 1 Isolator See Figure A-3
MnemonicActivation 1 Client Informs Application Server of

requested data
MnemonicDeactivation 1 Client Informs Application Server to stop

requested data (applies only to UPD
data)

MnemonicRequest 1 Client Provides the Isolator with the
information needed to fill the
request. See Figure A-11.

Vector of data object(s) 1 Isolator Objects used to transfer data
USM_List 1 Isolator See Figure A-5
USM_SSC_List 1 Isolator See Figure A-5
Schedule_Request_List 1 Isolator See Figure A-5
SAR 1 Client See Figure A-6
SDR 1 Client See Figure A-7
Alert 1 Isolator See Figure A-2

 B-2 453-SDS-SWSI

Table A-1. List of Common Classes

 B-3 453-SDS-SWSI

Class Build originator notes
GCParms 2 Isolator See Figure A-5
TSW 2 Client See Figure A-1
SV 2 Client See Figure A-1
RAR, RADR, RAMR, PBKR, PBKDR,
PBKMR

2 Client DAS Resource and Playback
Requests. See Figure A-12

RAV, PBKS 2,3 Isolator DAS Resource and Playback
Availabilities. See Figure A-13

ModifySSC, UnlockSSC 2 Client SSC Requests. See Figure A-14
ViewSSC 2 Isolator SSC Values. See Figure A-14
SigRR, URRM 2 Client DAS GCMRs. See Figure A-15
Service_Reconfiguration_Request 2 Client See Figure A-2
User_Reacquisition_Request 2 Client See Figure A-2
Forward_Link_Sweep_Request 2 Client See Figure A-2
Forward_Link_EIRP_Reconfiguration 2 Client See Figure A-2
Doppler_Compensation_Inhibit_
Request

2 Client See Figure A-2

Expanded_User_Frequency_
Uncertainty_Request

2 Client See Figure A-2

UPD 2 Isolator See Figure A-2
ASAR 2 Client See Figure A-8
RR 2 Client See Figure A-9
WLR 2 Client See Figure A-10
TTM 2 Isolator See Figure A-2
RCTD 2 Isolator See Figure A-2

Table A-1. List of Common Classes (cont.)

Except for an initial setup object and occasional password changing support, all data sent to the Client
application from the Isolator will be requested by the Client using a standard naming convention. The
proposed naming convention is given in the table below. ‘EIF’ indicates the test database, ‘norm’ the
standard database.

Name Description
USM_List_(EIF or norm)_(User ID) The active schedule list for a particular user
USM_SSC_List_(EIF or norm)_(Event ID) The service list for a particular event

Schedule_Request_List_(EIF or norm)_(User ID) The schedule request list for a particular user

RAV_(User ID)_#### The DAS Resource Availabilities
PBKS_(User ID)_#### The DAS Playback Availabilities
SSC_(User ID)_#### Values for a particular SSC set

 B-4 453-SDS-SWSI

GCParms_(EIF or norm)_(TDRS ID)_(supiden)_
(Service Type)_(link)

The current ground control service parameter values
for an event and service defined by the TDRS ID,
supiden, service type, and link number.

UPD_(EIF or norm)_ (SIC) The current UPDs for that SIC

Alert_(EIF or norm)_ (SIC) Alerts for a particular SIC

RCTD_(EIF or norm)_(SIC) The RCTDs for that SIC
TTM_(EIF or norm)_(SIC) The TTMs for that SIC

Table A-2. Standard Naming Convention

All the common objects used to send data to the Client will implement the DataEncapsulation interface.
This provides methods to set and get the name of the data. The common objects will provide
enumeration constants where applicable.

All common objects used to send data to the Isolator, such as the SAR, GCMRs, SVs, and TSWs will
implement the UserDirective interface. This provides methods to set and get the userID (the ID of the
user sending the data). This ID will be set by the Application Server before forwarding the data on to
the Isolator.

The contents of most of the above types of common objects are presented in Figures A-1 through A-
10.

 B-5 453-SDS-SWSI

Figure A-1 Common Class Diagram 1

 B-6 453-SDS-SWSI

Figure A-2 Common Class Diagram 2

 B-7 453-SDS-SWSI

Figure A-3 Common Class Diagram 3

 B-8 453-SDS-SWSI

Figure A-4 Common Class Diagram 4

 B-9 453-SDS-SWSI

Figure A-5 Common Class Diagram 5

 B-10 453-SDS-SWSI

 B-11 453-SDS-SWSI

Figure A-6 SAR Common Class Diagram

Figure A-7 SDR Common Class Diagram

 B-12 453-SDS-SWSI

Figure A-8 ASAR Common Class Diagram

 B-13 453-SDS-SWSI

Figure A-9 RR Common Class Diagram

 B-14 453-SDS-SWSI

Figure A-10 WLR Common Class Diagram

 B-15 453-SDS-SWSI

Figure A-11 MnemonicRequest Common Class Diagram

 B-16 453-SDS-SWSI

Figure A-12 DAS Requests Common Class Diagram

 B-17 453-SDS-SWSI

Figure A-13 DAS Availability Common Class Diagrams

 B-18 453-SDS-SWSI

Figure A-14 SSC Support Common Class Diagrams

 B-19 453-SDS-SWSI

Figure A-15 DAS GCMR Support Common Class Diagrams

 B-1 453-SDS-SWSI

Appendix B - Traceability

 E-1 453-SDS-SWSI

Appendix C - Isolator-SNIF Interface

This appendix defines data exchange formats between the Isolator and the SNIF.

The communication protocol between the Isolator and the SNIF is UDP, the format of the data
exchanged between the two elements is chosen to minimize software changes in the future in case we
decide to change the protocol to TCP/IP.

In general, the format will consist of 2-bytes Synchronization pattern, followed by 4 bytes of support
identification code, followed by 1-byte of NCC mode, followed by 1-byte of data type, followed by 2-
bytes of data length and finally followed by variable length of the actual data information.

SY – 2-bytes fixed synchronization pattern. We select 2 ASCII characters ‘SY’ for sync.

sic – 4-bytes (4 Alpha-Numerical Characters) representing the Support Identification Code (SIC)
specific to the mission. When the message is not mission specific (i.e. general alert for all), the SIC
will be set to 0000.

n – 1 byte representing the addressed NCC that the Data Information pertain to.

• ‘N’ for normal NCC

• ‘E’ for engineering interface (EIF) or ANCC

t – 1 byte representing the Type of the Information and described as follow:

• ‘K’ for Key Information of the messages stored in the data base

• ‘F’ for File Information of the messages stored in the local disk area

• ‘A’ for Alerts messages stored in the data base

• ‘M’ for actual NCC Messages such as: MGCMRs

dl – 2-bytes representing the length (in bytes) of the Data Information. The two bytes represent a
binary unsigned short (16 bits) Integer value.

SY n t dl Data Information sic

 E-2 453-SDS-SWSI

Data Information – variable number of bytes corresponding to the actual data exchanged between the
Isolator and the SNIF. This Data Information is further defined according to
its specific type as follow:

 E-3 453-SDS-SWSI

Key Information ‘K’ Type:

Data Information (Key info.)

mt – 2-bytes (2 ASCII characters) representing the Message Type, defined as follow:

• ‘SA’ - Schedule Add Request (SAR) Messages

• ‘AS’ - Alternate SAR (ASAR) Messages

• ‘SD’ - Schedule Delete Request (SDR) Messages

• ‘RR’ - Replace Request (RR) Messages

• ‘WL’ - Wait List Request (WLR) Messages

• ‘UR’ - User Reconfiguration Request (URRM) Messages

Index number – Long integer (4 bytes) representing the primary key number of the message as stored
in the database. The Index number is unique for each message stored in the
database table. The Request ID (7-digits numerical number) will be used as the
unique index number of the message. However, the valid Request ID range has to
be between 1 and 8,999,999. A sequence number generated by the database with
maximum and minimum limitations will be used by the Isolator, the SNIF and the
SDIF as a requestID. Because some events can be indefinite (in the case of DAS),
the database will check if a Request ID is still occupied by an event and, in that case,
it will skip that ID and tries the next one till it finds an unused one.

The K type messages are only sent by the Isolator to the SNIF. Even though, SNIF stores messages
data in the data base, it does not send K type information to the Isolator but instead it sends alerts
messages. SNIF will store its own generated alerts messages in the database prior to their transmission
to the Isolator.

Both the SNIF and the Isolator will poll the database or file directory periodically (every 30 - 60
seconds) for messages that have been saved but not transmitted. The messages will be processed and
transmitted to the expecting end. The messages that have been stored in the data base will be tagged as
done and the messages that have been stored in the local disk space will be deleted after transmission.

Index number mt

Sent by:

Isolator (SnifInterface)

 E-4 453-SDS-SWSI

File Information ‘F’ Type:

Data Information (File info.)

mt – 2-bytes (2 ASCII characters) representing the Message Type, defined as follow:

• ‘SV’ - State Vector (SV) Messages

• ‘TS’ - TDRS Scheduling Window (TSW) Messages

• ‘RC’ - Return Channel Time Delay Measurement (RCTDM) Messages

• ‘TT’ - Time Transfer (TTM) Messages

File Pathname – Variable number of bytes (ASCII characters) representing the path name of the file in

the local disk area where the message was stored. The name of the file is formatted
such that the SIC, Message type and date/time of storage are all included in a 15
characters string (see figure below.)

File Name

Where:

 ‘mt’ field is as defined above.

‘sic’ – 4-bytes representing the Support Identification Code (SIC) specific to the mission. This
field is pulled from the primary header of the message just after the SY field (see format
diagram on first page of this section)

 Date/Time as: YYYYDDDHHMMSS (Year, day of the year, hour, minute, second)

File Pathname mt

Sent by:

Isolator (SnifInterface)

Sent by:

SNIF

Date/time mt sic

 E-5 453-SDS-SWSI

 E-6 453-SDS-SWSI

Alert Message ‘A’ Type:

Data Information (Alert Message)

s – 1-byte (1 ASCII character) representing the severity of the alert message, defined as follow:

• ‘G’ – Green

• ‘Y’ – Yellow

• ‘R’ – Red

source – 16-byte string (padded with spaces) indicating the source of the alert

date – 9-byte ASCII digits representing date and time when the alert was generated in the following
format: YYYYDDDHHMMSS (Year, day of the year, hour, minute, second)

Alert Message – Character string describing the alert message. The Alert Message can be of any
length and can have any number of delimited characters.

• ‘US’ - User Schedule (USM) Messages

ο ‘U1’ – Normal-Fixed (US1) Messages

ο ‘U2’ – Premium-Fixed (US2) Messages

ο ‘U3’ – Simulation-Fixed (US3) Messages

ο ‘U4’ – Normal-Flexible (US4) Messages

ο ‘U5’ – Simulation-Flexible (US5) Messages

• ‘GD’ - GCM Disposition (GCMD) Messages

• ‘GS’ - GCM Status (GCMS) Messages

• ‘AF’ - Acquisition Failure Notification (AFN) Messages

• ‘SR’ - Schedule Result (SRM) Messages

• Other type of alert messages sent by the Isolator to SNIF or to the Application Server such as:
event message 5 minutes before operation start time.

Alert Message s

Sent by:

SNIF

source date

 E-7 453-SDS-SWSI

NCC Message ‘M’ Type:

Data Information (NCC Message)

mt – 2-bytes (2 ASCII characters) representing the Message Type, defined as follow:

• Multiple Ground Control Message Request (MGCMR) Messages

ο ‘AC’ - User Reacquisition Request (URR) Messages

ο ‘LS’ - Forward Link Sweep Request (FLSR) Messages

ο ‘LE’ - Forward Link EIRP Reconfiguration (FLER) Messages

ο ‘UF’ - Expanded User Frequency Uncertainty Request (EUFUR)

ο ‘DC’ - Doppler Compensation Inhibit Request (DCIR) Messages

• ‘PD’ - User Performance Data (UPD) Messages

Data of the message – variable length buffer containing the actual Message data. The data will be

composed of series of all ASCII name-value pairs delimited by a semicolon ‘;’
character. The name and the value can be of any meaningful ASCII string
separated by the’=’ sign. i.e.

MESSAGE_TYPE=91;MESSAGE_CLASS=01;MESSAGE_ID=ABCDEFG;

Data of the Message mt

Sent by:

Isolator

SNIF

 E-1 453-SDS-SWSI

Appendix D – Isolator-SDIF Interface

TBS

 E-1 453-SDS-SWSI

Appendix E – Isolator Object Types Description

Data flow between the Application Server, Isolator and SNIF

Message Name Object Name Application Server Isolator SNIF

Alert Messages Alert
Receive
Port 3

Store, Send and
Forward

Store & Send

Schedule Add
Request

ScheduleRequest of
SAR

Send
Port 1

Store data in DB
Send Key Info

Receive Key Info

Schedule Delete
Request

ScheduleRequest of
SDR

Send
Port 1

Store data in DB
Send Key Info

Receive Key Info

Alternate SAR
ScheduleRequest of

ASAR
Send
Port 1

Store data in DB
Send Key Info

Receive Key Info

Replace Request
ScheduleRequest of

RR
Send
Port 1

Store data in DB
Send Key Info

Receive Key Info

Wait List Request
ScheduleRequest of

WLR
Send
Port 1

Store data in DB
Send Key Info

Receive Key Info

State Vector SV
Send
Port 1

Store data in File
Send File Info

Receive File Info

TDRS Scheduling
Window

TSW
Send
Port 1

Store data in File
Send File Info

Receive File Info

Service
Reconfiguration

Service_Reconfigur
ation_Request

Send
Port 1

Store data and
Send Key Info

Receive Key Info

GCMR- User
Reaction Request

User_Reacquisition
_Request

Send
Port 1

Forward Receive Key Info

GCMR- Forward
Link Sweep

Forward_Link_Req
uest

Send
Port 1

Forward Receive Key Info

GCMR-Forward
Link EIRP

Reconfiguration
Normal Request

Forward_Link_EIR
P_Reconfiguration

(Normal power
mode set)

Send
Port 1

Forward Receive Key Info

GCMR-Forward
Link EIRP

Reconfiguration
High Power

Forward_Link_EIR
P_Reconfiguration
(High power mode
set)

Send
Port 1

Forward Receive Key Info

 E-2 453-SDS-SWSI

Message Name Object Name Application Server Isolator SNIF
GCMR- Expanded

User Frequency
Uncertainty

Expanded_User_Fr
equency_Uncertaint

y_Request

Send
Port 1

Forward Receive Key Info

GCMR-Doppler
Compensation
Inhibit Request

none SSA shuttle

Store data and
Send Key Info

Send
Port 1

Forward Receive Key Info

Return Channel
Time Delay
Message

MnemonicRequest
RCTDM

Receive
Port 2

Receive File Info
Convert file data

Send Object

Store data in File
Send File Info

Time Transfer
Message

MnemonicRequest
TTM

Receive
Port 2

Receive File Info
Convert file data

Send Object

Store data in File
Send File Info

User Performance
Data

MnemonicData of
UPD

Receive
Port 2

Receive data
Convert to Object

Send Object
Send data

Schedule Result
Message

SRM
Receive Alert

Port 3
Forward Alert

Update Database,
Store & send an

Alert

User Schedule
Message

USM
Receive Alert

Port 3
Forward Alert

Update Database,
Store & send an

Alert
Acquisition Failure

Notification
AFN

Receive Alert
Port 3

Forward Alert
Store & send an

Alert

 E-3 453-SDS-SWSI

Data flow between the Application Server and Isolator

Message
Name

Object Name
Application

Server
Isolator SDIF

Schedule
Request
Summary
Request

MnemonicRequest
(Schedule_Request_

List)

Send
Port 1

Receive and
process Request

-

Schedule
Request
Summary
Response

MnemonicData of
Schedule_Request_L

ist

Receive
Port 2

Send Object -

Active Schedule
Summary
Request

MnemonicRequest
(USM_List)

Send
Port 1

Receive and
process Request

-

Active Schedule
Summary
Response

MnemonicData of
USM_List

Receive
Port 2

Merge Data from
DAS if DAS User

Send Object
-

Service List for
Events

Request

MnemonicRequest
(USM_SSC_List)

Send
Port 1

Receive and
process Request

-

Service List of
Events

Response

MnemonicData of
USM_SSC_List

Receive
Port 2

 Send Object -

User Log-in
Request

LoginObject
Send
Port 1

Receive and
process Request

-

 E-4 453-SDS-SWSI

User Log-out
Request

LogoffObject
Send
Port 1

Receive and
process Request

-

 E-5 453-SDS-SWSI

Message
Name

Object Name
Application

Server
Isolator SDIF

Fail Log-in
Response

LoginFailed
Receive
Port 2

Send Object -

Good Log-in
Response

SetupObject
Receive
Port 2

Send Object -

 SSC Service
Parameters

Request

MnemonicRequest
(SSC)

Send
Port 1

Receive and
process Request

-

 SSC Service
Parameters

Reply

MnemonicData of
ViewSSC

Receive
Port 2

Send Object -

Modify SSC
Service

Parameters
Request

ModifySSC
Send
Port 1

Receive and
process Request

-

Unlock the
SSC code

UnlockSSC
Send
Port 1

Receive and
process Request

-

Ground Control
Message Param

Request

MnemonicRequest
(GCParms)

Send
Port 1

Receive and
process Request

-

Ground Control
Message Param

Response

MnemonicData of
GCParms

Receive
Port 2

Send Object -

 E-6 453-SDS-SWSI

Data flow between the Application Server, Isolator and SDIF

Message Name Object Name
Application

Server
Isolator SDIF

Alert Messages Alert
Receive
Port 3

Store, Send and
Forward

Store & Send

Resource
Availability Request

MnemonicRequest
(RAV)

Send
Port 1

Forward Receive

Resource
Availability
Response

 MnemonicData
of RAV

Receive
Port 2

Forward Send

Active Schedule
Summary Request

MnemonicRequest
(USM_List)

Send
Port 1

Receive, send
Request and

process Request

Receive & Send
Active Schedule

List

Active Schedule
Summary Response

MnemonicData of
USM_List

Receive
Port 2

 Send Object -

Service List for
Events Request

MnemonicRequest
(USM_SSC_List)

Send
Port 1

Forward -

Service List of
Events Response

MnemonicData of
USM_SSC_List

Receive
Port 2

 Send Object -

Resource
Allocation Request

ScheduleRequest of
RAR

Send
Port 1

Store data in
DB

Send Key Info

Receive Key
Info

Resource
Allocation
Response

RARRes
Receive Alert

Port 3
Forward Alert

Update DB,
Store & Send

an Alert
Resource

Allocation Deletion
Request

ScheduleRequest of
RADR

Send
Port 1

Store data in
DB

Send Key Info

Receive Key
Info

Resource
Allocation Deletion

Response
RADRes

Receive Alert
Port 3

Forward Alert
Update DB,

Store & Send
an Alert

Resource
Allocation

Modification
Request

ScheduleRequest of
RAMR

Send
Port 1

Store data in
DB

Send Key Info

Receive Key
Info

 E-7 453-SDS-SWSI

Message Name Object Name
Application

Server
Isolator SDIF

Resource
Allocation

Modification
Response

RAMRes
Receive Alert

Port 3
Forward Alert

Update DB,

Store & Send
an Alert

Service

Reconfiguration
Request

Service_Reconfigur
ation_Request

Send
Port 1

Forward Receive

Service
Reconfiguration

Response

SerRRes converted
to Alert

Receive Alert
Port 3

Forward Alert
Store & Send

an Alert

Signal Reacquisition
Request

User_Reacquisition
_Request

Send
Port 1

Forward Receive

Signal Reacquisition
Response

SigRRes converted
to Alert

Receive Alert
Port 3

Forward Alert
Store & Send

an Alert
User Performance

Data Status
 MnemonicData of

UPDS
Receive
Port 2

Forward Send

Playback Search
Request

 MnemonicRequest
(PBKS)

Send
Port 1

Forward Receive

Playback Search
Response

MnemonicData of
PBKS

Receive
Port 2

Forward Send

Playback Request
ScheduleRequest of

PBKR
Send
Port 1

Store data in
DB

Send Key Info

Receive Key
Info

Playback Response
PBKRes

converted to Alert
Receive Alert

Port 3
Forward Alert

Update DB,
Store & Send

an Alert

Playback Deletion
Request

ScheduleRequest of
PBKDR

Send
Port 1

Store data in
DB

Send Key Info

Receive Key
Info

Playback Deletion
Response

PBKDRes
converted to Alert

Receive Alert
Port 3

Forward Alert
Update DB,

Store & Send
an Alert

Playback
Modification

Request

ScheduleRequest of
PBKMR

Send
Port 1

Store data in
DB

Send Key Info

Receive Key
Info

 E-8 453-SDS-SWSI

Playback
Modification

Response

PBKMRes
converted to Alert

Receive Alert
Port 3

Forward Alert
Update DB,

Store & Send
an Alert

State Vector
Update

SV
Send
Port 1

Forward Receive

State Vector
Update Response

SVRes
Receive Alert

Port 3
Forward Alert

Store & Send
an Alert

G-2 453-SDS-SWSI

Appendix F – SWSI Database Tables

Table Name Type of
Table

Description

ACTIVE_SCHEDULE Dynamic Stores information from NCCDS USMs
ACTIVE_SCH_PARAM Dynamic Stores information from NCCDS USMs
ACTIVE_SCH_SERVICE Dynamic Stores information from NCCDS USMs
ACTIVITY_LOG Dynamic Stores User log in activities
ALERT_MESSAGE Dynamic Stores all the Alerts received from DAS and generated by

SWSI
DEF_DIRECTORIE Static
GCMR_PARAM Dynamic Stores information about NCCDS User GCMR
GCMR_REJECT_CODE Static
PLAYBACK Dynamic Stores DAS Playback Requests
PROTOTYPE_EVENT_CODE Static Stores NCCDS Prototype Codes
REALTIME_CONNECTION Static Stores information about making connections with NCCDS

real-time system
REQUEST Dynamic Stores all the NCCDS and DAS Scheduling Requests made by

SWSI user
REQUEST_STATUS Static Contains description of all the valid status codes
REQUEST_TYPE Static
SAR Dynamic Stores information for NCCDS and DAS Scheduling Requests
SCHEDULE_CONNECTION Static Contains information about making connections with NCCDS

scheduling system
SERVICE_LINK Static
SERVICE_PARAM Static Contains information for performing parameter validation,

building dynamic display panels, and processing NCCDS
GCMR/USM messages

SERVICE_TYPE Static Contains all the Service Types supported by SWSI and other
information used for processing NCCDS GCMR/USM
messages

SIC Static Contains all the SICs supported by SWSI
SP_ENUM_VALIDATION Static Contains information for validating parameters that of type

Enumerated
SP_NUMERIC_VALIDATION Static Contains information about validating parameters that have

valid range
SRM_RESULT_CODE Static Contains Text description of each SRM Result Code
SR_PARAM Dynamic Stores all parameters used in a SAR/RAR
SR_SERVICE Dynamic Stores service information for each event scheduled
SSC Semi-Static Contains SSC codes used to schedule SAR/RAR
SSC_PARAM Semi-Static Contains default values for each parameter assigned to an

SSC code

G-2 453-SDS-SWSI

SUPIDEN Static Contains valid SUPIDEN supported by SWSI
SWSI_USER Semi-Static Contains SWSI user information
SWSI_USER_SIC Static Intermediate table for SWSI_USER and SIC tables
TDRS_GROUP Static Contains TDRS group names
TDRS_IN_GROUP Static Intermediate table for TDR_NAME and TDRS_GROUP tables
TDRS_NAME Static Contains base TDRS names
UPD Static Contains information to build UPD display
UPD_ENUM_VALUE Static
UPD_LABEL Static
UPD_PARAM Static Contains information about UPD parameters to process

NCCDS UPD messages and for constructing UPD display
USR_GCMR Dynamic Stores information for NCCDS User Reconfiguration Requests
ACTIVE_SCHEDULE_V VIEW
ACTIVE_SCH_SERVICE_V VIEW
SCHEDULE_REQUEST_V VIEW
SR_SERVICE_V VIEW

G-2 453-SDS-SWSI

Abbreviations and Acronyms

AFN Acquisition Failure Notice

ANCC Auxiliary Network Control Center

API Application Programming Interface

ASAR Alternate Schedule Add Request

BB Bit Block

CA Certificate Authority

CCS Communications and Control Segment

CM Configuration Management

CVS Concurrent Versions System

DAS Demand Access System

DASCON Demand Access System Controller

DCIR Doppler Compensation Inhibit Request

DDD Data Display Debugger

EIF Engineering Interface

EIRP effective isotropic radiated power

EUFUR Expanded User Frequency Uncertainty Request

FDF Flight Dynamics Facility

FLER Forward Link EIRP Reconfiguration

FLSR Forward Link Sweep Request

GCC GNU C Compiler

GCM Ground Control Message

GCMR Ground Control Message Request

GCM S&D Ground Control Message Status & Disposition

GDB GNU Debugger

GDPro Graphics Designer Professional

G-2 453-SDS-SWSI

GN Ground Network

GNU recursive acronym for “GNU’s Not Unix”

GSFC Goddard Space Flight Center

GUI Graphical User Interface

HA High Availability

HP Hewlett-Packard

HTML Hypertext Markup Language

ICD Interface Control Document

IDE Integrated Development Environment

IIRV Improved InterRange Vectors

IONET IP Operational Network

IP Internet Protocol

JSWITCH Java-based Spacecraft Web Interface to Telemetry & Command Handling

JVM Java Virtual Machine

KSA Ku-band single access

KaSA Ka-band single access

LDBP Long Duration Balloon Project

MAF Multiple Access Forward

MAR Multiple Access Return

MGCMR Multiple Ground Control Message Request

MOC Mission Operations Center

MSOCC Multisatellite Operations Control Center

PBKDR Playback Deletet Request

PBKMR Playback Modifucation Request

PBKR Playback Request

NASA National Aeronautics and Space Administration

NCC Network Control Center

NCCDS Network Control Center Data System

G-2 453-SDS-SWSI

NCD NCCDS Central Delogger

NISN NASA Integrated Services Network

NPG NCCDS Protocol Gateway

OOAD object-oriented analysis & design

ODM Operations Data Message

RADR Resource Allocation Deletion Request

RAMR Resouce Allocation Modify Request

RAR Resource Allocation Request

RCS Revision Control System

RCTD Return Channel Time Delay

RCTDM Return Channel Time Delay Message

RFI Radio Frequency Interference

RMA Reliability/Maintainability/Availability

RR Replace Request

SA Single Access

SAA South Atlantic Anomaly

SAR Schedule Add Request

SDR Schedule Delete Request

SIC Spacecraft Identification Code

SMAF S-band Multiple Access Forward

SMAR S-band Multiple Access Return

SN Space Network

SNIF SWSI-NCCDS Interface

SRM Schedule Result Message

SSL Secure Socket Layer

SPSR Service Planning Segment Replacement

SSA S-band Single Access

SSC Service Specification Code

G-2 453-SDS-SWSI

STGT Second TDRSS Ground Terminal

SUPIDEN Support Identifier

SV State Vector

SWSI SN Web Services Interface

TBD to be defined/determined

TBS to be specified/supplied

TCP Transmission Control Protocol

TDRS Tracking and Data Relay Satellite

TLE two-line element

TSW TDRS Scheduling Window

TTM Time Transfer Message

TUT TDRS Unscheduled Time

UDP User Datagram Protocol

UML Unified Modeling Language

UPD User Performance Data

UPDR User Performance Data Request

UPS User Planning System

URR User Reacquisition Request

URRM User Reconfiguration Request Message

USM User Schedule Message

WLR Wait List Request

WSGT White Sands Ground Terminal

WWW World Wide Web

XDR eXternal Data representation

XML eXtensible Markup Language

